Gu Yong-Xin, Li Qiao-Zhi, Zhao Pei, Zhao Xiang
Institute for Chemical Physics & Department of Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment , Xi'an Jiaotong University , Xi'an 710049 , China.
Inorg Chem. 2019 Aug 19;58(16):10629-10636. doi: 10.1021/acs.inorgchem.8b03079. Epub 2019 Aug 7.
By using density functional theory calculations combined with statistical thermodynamic analyses, the stabilization performance of a series of fullerene cages C (2 = 70-74) via encapsulating monometal uranium was systematically and thoroughly investigated. Results indicate that fullerene cages (8149)-C and (14246)-C obeying the isolated pentagon rule and (10612)-C featured with one pentalene moiety were the most promising candidates to encage uranium. Subsequent Mulliken spin density distribution and frontier molecular orbital analyses suggest that four formal electron transfer occurs from monometal U to above the carbon cages. There also exists a high degree of covalent character between the atom U and fullerenes C based on Mayer bond order and quantum theory of atoms in molecule (QTAIM) analyses, indicative of the cooperative stabilization by both ionic and covalent bonding interactions. In addition, investigations on the above-mentioned U@C isomers and other favorable candidates (U@(8094)-C, U@(10610)-C, U@(13393)-C, and U@(14049)-C) reveal that these isomers could be closely linked via simple C addition and Stone-Wales transformation. These results will provide a systematic understanding on U-based endohedral metallofullerenes (EMFs) and also might be helpful for further exploration of EMF growth mechanisms.
通过结合密度泛函理论计算和统计热力学分析,系统而全面地研究了一系列富勒烯笼C(n = 70 - 74)通过封装单金属铀的稳定性能。结果表明,符合孤立五边形规则的富勒烯笼(8,14,9)-C和(14,24,6)-C以及具有一个戊搭烯部分的(10,6,12)-C是封装铀最有前景的候选物。随后的 Mulliken 自旋密度分布和前线分子轨道分析表明,单金属U向碳笼上方发生了四个形式上的电子转移。基于 Mayer 键级和分子中的原子量子理论(QTAIM)分析,U原子与富勒烯C之间也存在高度的共价特征,表明离子和共价键相互作用的协同稳定作用。此外,对上述U@C异构体和其他有利候选物(U@(8,0,9)-C、U@(10,6,10)-C、U@(13,3,9)-C和U@(14,0,4)-C)的研究表明,这些异构体可以通过简单的C添加和 Stone-Wales 变换紧密相连。这些结果将为基于U的内嵌金属富勒烯(EMF)提供系统的理解,也可能有助于进一步探索EMF的生长机制。