a College of Information Science and Technology , Dalian Maritime University , Dalian , Liaoning Province , China.
b Centre de Recherche du Center Hospitalier Universitaire de Sherbrooke , Sherbrooke , Quebec , Canada.
Epigenetics. 2019 Apr;14(4):405-420. doi: 10.1080/15592294.2019.1588685. Epub 2019 Mar 18.
DNA methylation is known to be responsive to prenatal exposures, which may be a part of the mechanism linking early developmental exposures to future chronic diseases. Many studies use blood to measure DNA methylation, yet we know that DNA methylation is tissue specific. Placenta is central to fetal growth and development, but it is rarely feasible to collect this tissue in large epidemiological studies; on the other hand, cord blood samples are more accessible. In this study, based on paired samples of both placenta and cord blood tissues from 169 individuals, we investigated the methylation concordance between placenta and cord blood. We then employed a machine-learning-based model to predict locus-specific DNA methylation levels in placenta using DNA methylation levels in cord blood. We found that methylation correlation between placenta and cord blood is lower than other tissue pairs, consistent with existing observations that placenta methylation has a distinct pattern. Nonetheless, there are still a number of CpG sites showing robust association between the two tissues. We built prediction models for placenta methylation based on cord blood data and documented a subset of 1,012 CpG sites with high correlation between measured and predicted placenta methylation levels. The resulting list of CpG sites and prediction models could help to reveal the loci where internal or external influences may affect DNA methylation in both placenta and cord blood, and provide a reference data to predict the effects on placenta in future study even when the tissue is not available in an epidemiological study.
DNA 甲基化已知对产前暴露有反应,这可能是将早期发育暴露与未来慢性疾病联系起来的机制的一部分。许多研究使用血液来测量 DNA 甲基化,但我们知道 DNA 甲基化是组织特异性的。胎盘是胎儿生长和发育的中心,但在大型流行病学研究中很少可行地收集这种组织;另一方面,脐带血样本更容易获得。在这项研究中,基于 169 个人的胎盘和脐带血组织的配对样本,我们研究了胎盘和脐带血之间的甲基化一致性。然后,我们使用基于机器学习的模型,使用脐带血中的 DNA 甲基化水平来预测胎盘中特定基因座的 DNA 甲基化水平。我们发现胎盘和脐带血之间的甲基化相关性低于其他组织对,这与现有观察结果一致,即胎盘甲基化具有独特的模式。尽管如此,仍有许多 CpG 位点在两种组织之间表现出很强的关联。我们基于脐带血数据建立了胎盘甲基化的预测模型,并记录了一组 1012 个 CpG 位点,其测量和预测的胎盘甲基化水平之间具有高度相关性。由此产生的 CpG 位点列表和预测模型可以帮助揭示内部或外部影响可能影响胎盘和脐带血中 DNA 甲基化的位置,并为未来研究中即使组织不可用时预测对胎盘的影响提供参考数据。