Suppr超能文献

出生队列中全表观基因组跨组织预测建模及脐血与胎盘甲基化比较

Epigenome-wide cross-tissue predictive modeling and comparison of cord blood and placental methylation in a birth cohort.

作者信息

De Carli Margherita M, Baccarelli Andrea A, Trevisi Letizia, Pantic Ivan, Brennan Kasey Jm, Hacker Michele R, Loudon Holly, Brunst Kelly J, Wright Robert O, Wright Rosalind J, Just Allan C

机构信息

Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.

出版信息

Epigenomics. 2017 Mar;9(3):231-240. doi: 10.2217/epi-2016-0109. Epub 2017 Feb 17.

Abstract

AIM

We compared predictive modeling approaches to estimate placental methylation using cord blood methylation.

MATERIALS & METHODS: We performed locus-specific methylation prediction using both linear regression and support vector machine models with 174 matched pairs of 450k arrays.

RESULTS

At most CpG sites, both approaches gave poor predictions in spite of a misleading improvement in array-wide correlation. CpG islands and gene promoters, but not enhancers, were the genomic contexts where the correlation between measured and predicted placental methylation levels achieved higher values. We provide a list of 714 sites where both models achieved an R ≥0.75.

CONCLUSION

The present study indicates the need for caution in interpreting cross-tissue predictions. Few methylation sites can be predicted between cord blood and placenta.

摘要

目的

我们比较了使用脐带血甲基化来估计胎盘甲基化的预测建模方法。

材料与方法

我们使用线性回归和支持向量机模型,对174对匹配的450k阵列进行了位点特异性甲基化预测。

结果

尽管全阵列相关性有误导性的提高,但在大多数CpG位点,两种方法的预测效果都很差。CpG岛和基因启动子(而非增强子)是测量的和预测的胎盘甲基化水平之间相关性达到较高值的基因组背景。我们提供了一个列表,其中包含714个位点,两种模型在这些位点的R≥0.75。

结论

本研究表明在解释跨组织预测时需要谨慎。脐带血和胎盘之间可预测的甲基化位点很少。

相似文献

1
Epigenome-wide cross-tissue predictive modeling and comparison of cord blood and placental methylation in a birth cohort.
Epigenomics. 2017 Mar;9(3):231-240. doi: 10.2217/epi-2016-0109. Epub 2017 Feb 17.
2
Locus-specific DNA methylation prediction in cord blood and placenta.
Epigenetics. 2019 Apr;14(4):405-420. doi: 10.1080/15592294.2019.1588685. Epub 2019 Mar 18.
5
Maternal circadian disruption is associated with variation in placental DNA methylation.
PLoS One. 2019 Apr 26;14(4):e0215745. doi: 10.1371/journal.pone.0215745. eCollection 2019.
6
Maternal tobacco use modestly alters correlated epigenome-wide placental DNA methylation and gene expression.
Epigenetics. 2011 Nov;6(11):1284-94. doi: 10.4161/epi.6.11.17819. Epub 2011 Nov 1.
10
Comparison of Illumina 450K and EPIC arrays in placental DNA methylation.
Epigenetics. 2019 Dec;14(12):1177-1182. doi: 10.1080/15592294.2019.1634975. Epub 2019 Jun 28.

引用本文的文献

1
Epigenetic signatures of maternal-fetal health: insights from cord blood and placenta.
Epigenetics. 2025 Dec;20(1):2508067. doi: 10.1080/15592294.2025.2508067. Epub 2025 May 23.
2
Predicting locus-specific DNA methylation levels in cancer and paracancer tissues.
Epigenomics. 2024 Mar 13;16(8):549-70. doi: 10.2217/epi-2023-0114.
4
Probing prenatal bisphenol exposures and tissue-specific DNA methylation responses in cord blood, cord tissue, and placenta.
Reprod Toxicol. 2023 Jan;115:74-84. doi: 10.1016/j.reprotox.2022.11.005. Epub 2022 Dec 5.
5
Associations between antenatal maternal asthma status and placental DNA methylation.
Placenta. 2022 Aug;126:184-195. doi: 10.1016/j.placenta.2022.06.008. Epub 2022 Jul 3.
6
Periconception and Prenatal Exposure to Maternal Perceived Stress and Cord Blood DNA Methylation.
Epigenet Insights. 2022 Feb 26;15:25168657221082045. doi: 10.1177/25168657221082045. eCollection 2022.
7
Associations between infant sex and DNA methylation across umbilical cord blood, artery, and placenta samples.
Epigenetics. 2022 Oct;17(10):1080-1097. doi: 10.1080/15592294.2021.1985300. Epub 2021 Oct 22.
8
Perinatal stress and methylation of the gene in newborns: systematic review.
Epigenetics. 2022 Sep;17(9):1003-1019. doi: 10.1080/15592294.2021.1980691. Epub 2021 Oct 1.
9
Epigenetic Alterations of Maternal Tobacco Smoking during Pregnancy: A Narrative Review.
Int J Environ Res Public Health. 2021 May 11;18(10):5083. doi: 10.3390/ijerph18105083.

本文引用的文献

1
missMethyl: an R package for analyzing data from Illumina's HumanMethylation450 platform.
Bioinformatics. 2016 Jan 15;32(2):286-8. doi: 10.1093/bioinformatics/btv560. Epub 2015 Sep 30.
2
Prediction of promoters and enhancers using multiple DNA methylation-associated features.
BMC Genomics. 2015;16 Suppl 7(Suppl 7):S11. doi: 10.1186/1471-2164-16-S7-S11. Epub 2015 Jun 11.
4
5
Stratified randomization controls better for batch effects in 450K methylation analysis: a cautionary tale.
Front Genet. 2014 Oct 13;5:354. doi: 10.3389/fgene.2014.00354. eCollection 2014.
6
Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays.
Bioinformatics. 2014 May 15;30(10):1363-9. doi: 10.1093/bioinformatics/btu049. Epub 2014 Jan 28.
7
Predicting DNA methylation level across human tissues.
Nucleic Acids Res. 2014 Apr;42(6):3515-28. doi: 10.1093/nar/gkt1380. Epub 2014 Jan 20.
9
A-clustering: a novel method for the detection of co-regulated methylation regions, and regions associated with exposure.
Bioinformatics. 2013 Nov 15;29(22):2884-91. doi: 10.1093/bioinformatics/btt498. Epub 2013 Aug 29.
10
A data-driven approach to preprocessing Illumina 450K methylation array data.
BMC Genomics. 2013 May 1;14:293. doi: 10.1186/1471-2164-14-293.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验