Suppr超能文献

基于遗传算法的电子处方平行外固定器优化。

Optimization of electronic prescription for parallel external fixator based on genetic algorithm.

机构信息

School of Artificial Intelligence and Data Science, Hebei University of Technology, No. 8 Guangrong Road, Hong Qiao, Tianjin, 300130, China.

Rehabilitation Hospital, National Research Center for Rehabilitation Technical Aids, No. 1 Ronghua Middle Road, Da Xing, Beijing, 100176, China.

出版信息

Int J Comput Assist Radiol Surg. 2019 May;14(5):861-871. doi: 10.1007/s11548-019-01931-3. Epub 2019 Mar 18.

Abstract

PURPOSE

For the parallel external fixator, there are some defects, such as uneven distraction rate, unbearable pain and uncontrollable movement trajectory in practical clinical applications. In order to solve the problems, a new deformity correction algorithm, which is used to calculate the elongation of the six struts, is developed. Meanwhile, the corresponding computer software for getting the electronic prescription is developed.

METHODS

First, the trajectory of the moving bone is planned by Cartesian coordinate path control. Next, the prescription is obtained from the trajectory by the inverse pose solution algorithm. Finally, the genetic algorithm is utilized to optimize the achieved prescription. From the year of 2015 to 2018, twenty-three patients with complicated tibia deformity are treated by using parallel external fixator and the developed computer software. All patients have standing, patella-forward, full-length post-operative AP and lateral radiographs of the lower limbs with the complete proximal ring for getting the deformity parameters and frame parameters. These parameters are input into the computer software to calculate a daily prescription schedule for strut adjustment. Radiographs are taken regularly to determine the effects of recovery during the correction process.

RESULTS

The mean time of follow-up is 18 months (range 11-40 months). All patients reach the requirements for deformity correction, and their symptoms and appearance are improved significantly. No cases of wound infections or complications occur, and no severe pain came as well during the correction process.

CONCLUSIONS

By using the computer-aided parallel external fixator for the correction of lower limb deformities, satisfactory outcomes can be achieved. Hence, this method greatly improved the treatment of these patients in a clinical application.

摘要

目的

对于并行外固定器,在实际临床应用中存在一些缺陷,如不均匀的撑开率、难以忍受的疼痛和不可控的运动轨迹。为了解决这些问题,开发了一种新的畸形矫正算法,用于计算六根支柱的伸长量。同时,开发了相应的获取电子处方的计算机软件。

方法

首先,通过笛卡尔坐标路径控制规划移动骨的轨迹。接下来,通过逆位姿解算算法从轨迹中获取处方。最后,利用遗传算法对获得的处方进行优化。从 2015 年到 2018 年,23 例复杂胫骨畸形患者使用并行外固定器和开发的计算机软件进行治疗。所有患者均行站立位、髌骨前位、下肢全长术后正侧位 X 线片,完整近端环获取畸形参数和框架参数。这些参数输入计算机软件,计算支柱调整的每日处方计划。定期拍摄 X 光片以确定矫正过程中的恢复效果。

结果

平均随访时间为 18 个月(范围 11-40 个月)。所有患者均达到畸形矫正要求,症状和外观明显改善。在矫正过程中,无伤口感染或并发症发生,也无严重疼痛。

结论

使用计算机辅助并行外固定器矫正下肢畸形可获得满意的效果。因此,这种方法在临床应用中极大地改善了这些患者的治疗效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验