Australian Centre for Ancient DNA, University of Adelaide, Adelaide, South Australia, Australia.
ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, South Australia, Australia.
Mol Ecol Resour. 2019 Jul;19(4):982-996. doi: 10.1111/1755-0998.13011. Epub 2019 Apr 29.
Bacteria are not only ubiquitous on earth but can also be incredibly diverse within clean laboratories and reagents. The presence of both living and dead bacteria in laboratory environments and reagents is especially problematic when examining samples with low endogenous content (e.g., skin swabs, tissue biopsies, ice, water, degraded forensic samples or ancient material), where contaminants can outnumber endogenous microorganisms within samples. The contribution of contaminants within high-throughput studies remains poorly understood because of the relatively low number of contaminant surveys. Here, we examined 144 negative control samples (extraction blank and no-template amplification controls) collected in both typical molecular laboratories and an ultraclean ancient DNA laboratory over 5 years to characterize long-term contaminant diversity. We additionally compared the contaminant content within a home-made silica-based extraction method, commonly used to analyse low endogenous content samples, with a widely used commercial DNA extraction kit. The contaminant taxonomic profile of the ultraclean ancient DNA laboratory was unique compared to modern molecular biology laboratories, and changed over time according to researcher, month and season. The commercial kit also contained higher microbial diversity and several human-associated taxa in comparison to the home-made silica extraction protocol. We recommend a minimum of two strategies to reduce the impacts of laboratory contaminants within low-biomass metagenomic studies: (a) extraction blank controls should be included and sequenced with every batch of extractions and (b) the contributions of laboratory contamination should be assessed and reported in each high-throughput metagenomic study.
细菌不仅在地球上无处不在,而且在清洁的实验室和试剂中也可以非常多样化。在检查内源性含量低的样本(例如皮肤拭子、组织活检、冰、水、降解的法医样本或古代材料)时,实验室环境和试剂中既有活细菌又有死细菌,这是一个特别成问题的问题,因为在样本中,污染物的数量可能超过内源性微生物。由于污染物调查的相对数量较少,高通量研究中污染物的贡献仍然知之甚少。在这里,我们检查了 144 个阴性对照样本(提取空白和无模板扩增对照),这些样本是在典型的分子实验室和超净古 DNA 实验室中收集的,时间跨度为 5 年,以描述长期污染物多样性。我们还比较了一种常用的自制硅基提取方法(常用于分析内源性含量低的样本)和一种广泛使用的商业 DNA 提取试剂盒内的污染物含量。与现代分子生物学实验室相比,超净古 DNA 实验室的污染物分类特征是独特的,并且根据研究人员、月份和季节而随时间变化。与自制硅基提取方案相比,商业试剂盒还包含更高的微生物多样性和几种与人类相关的分类群。我们建议采取至少两种策略来减少低生物量宏基因组研究中实验室污染物的影响:(a)应包含提取空白对照,并与每批提取物一起测序;(b)应评估和报告每个高通量宏基因组研究中实验室污染的贡献。
Mol Ecol Resour. 2019-4-29
Appl Microbiol Biotechnol. 2017-10-27
Trends Microbiol. 2018-11-26
Front Microbiol. 2018-5-25
BMC Microbiol. 2019-8-14
Front Cell Infect Microbiol. 2025-7-28
Nat Microbiol. 2025-6-20
Microbiology (Reading). 2025-5
Trends Microbiol. 2018-11-26
FEMS Microbiol Ecol. 2017-5-1
Am J Clin Nutr. 2016-11
PLoS One. 2015-9-30
Genome Biol. 2014-12-17