Suppr超能文献

通过低能量 CO2 激光光刻技术构建交叉槽/柱微图案对海绵状细菌纤维素进行表面工程处理,以实现无疤痕伤口愈合。

Surface engineering of spongy bacterial cellulose via constructing crossed groove/column micropattern by low-energy CO laser photolithography toward scar-free wound healing.

机构信息

Center for Human Tissue and Organs Degeneration and Shenzhen Key Laboratory of Marine Biomedical Materials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79403, USA.

Center for Human Tissue and Organs Degeneration and Shenzhen Key Laboratory of Marine Biomedical Materials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi 030001, China.

出版信息

Mater Sci Eng C Mater Biol Appl. 2019 Jun;99:333-343. doi: 10.1016/j.msec.2019.01.116. Epub 2019 Jan 26.

Abstract

Bacterial cellulose (BC) is a bio-derived polymer, and it has been considered as an excellent candidate material for tissue engineering. In this study, a crossed groove/column micropattern was constructed on spongy, porous BC using low-energy CO laser photolithography. Applying the targeted immobilization of a tetrapeptide consisting of Arginine-Glycine-Aspartic acid-Serine (H-Arg-Gly-Asp-Ser-OH, RGDS) as a fibronectin onto the column platform surface, the resulting micropatterned BC (RGDS-MPBC) exhibited dual affinities to fibroblasts and collagen. Material characterization of RGDS-MPBC revealed that the micropattern was built by the column part with size of ~100 × 100 μm wide and ~100 μm deep, and the groove part with size of ~150 μm wide. Hydrating the MPBC did not result in the collapse of the integrity of the micropattern, suggesting its potential application in a highly hydrated wound environment. Cell culture assays revealed that the RGDS-MPBC exhibited an improved cytotoxicity to mouse fibroblasts L929, as compared to the pristine BC. Meanwhile, it was observed that the RGDS-MPBC was able to guide the ordered aggregation of human skin fibroblast (HSF) cells on the column platform surface, and no HSF cells were found in the groove channels. Over time, it was found that a dense network of collagen was gradually established across the groove channels. Furthermore, the in-vivo animal study preliminarily demonstrated the scar-free healing potential of the micropatterned BC materials. Therefore, this RGDS-MPBC material exhibited its advantages in guiding cell migration and collagen distribution, which could present a prospect in the establishment of "basket-woven" organization of collagen in normal skin tissue against the formation of dense, parallel aggregation of collagen fibers in scar tissue toward scar-free wound healing outcome.

摘要

细菌纤维素 (BC) 是一种生物衍生的聚合物,已被认为是组织工程的优秀候选材料。在这项研究中,使用低能量 CO 激光光刻在海绵状多孔 BC 上构建了交叉槽/柱微图案。通过将包含精氨酸-甘氨酸-天冬氨酸-丝氨酸的四肽 (H-Arg-Gly-Asp-Ser-OH,RGDS) 的靶向固定到柱平台表面上,所得的图案化 BC (RGDS-MPBC) 表现出对成纤维细胞和胶原蛋白的双重亲和力。RGDS-MPBC 的材料特性表明,微图案是由尺寸约为 100×100μm 宽和 100μm 深的柱部分和尺寸约为 150μm 宽的槽部分构建而成。水合 MPBC 不会导致微图案完整性的崩溃,表明其在高度水合的伤口环境中具有潜在的应用。细胞培养试验表明,与原始 BC 相比,RGDS-MPBC 对小鼠成纤维细胞 L929 的细胞毒性得到了改善。同时,观察到 RGDS-MPBC 能够引导人皮肤成纤维细胞 (HSF) 细胞在柱平台表面上有序聚集,而在槽通道中未发现 HSF 细胞。随着时间的推移,发现胶原的致密网络逐渐在槽道中建立。此外,体内动物研究初步证明了图案化 BC 材料无疤痕愈合的潜力。因此,这种 RGDS-MPBC 材料在引导细胞迁移和胶原分布方面表现出优势,这可能为在正常皮肤组织中建立“篮状”胶原组织提供前景,以防止在疤痕组织中形成密集、平行聚集的胶原纤维,从而实现无疤痕的伤口愈合结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验