Suppr超能文献

基于深度神经网络(DNN)的 CT 图像前列腺自动分割。

Automatic Segmentation of the Prostate on CT Images Using Deep Neural Networks (DNN).

机构信息

Department of Radiation Oncology, Josephine Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan.

Department of Radiation Oncology, Josephine Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan.

出版信息

Int J Radiat Oncol Biol Phys. 2019 Jul 15;104(4):924-932. doi: 10.1016/j.ijrobp.2019.03.017. Epub 2019 Mar 16.

Abstract

PURPOSE

Recent advances in deep neural networks (DNNs) have unlocked opportunities for their application for automatic image segmentation. We have evaluated a DNN-based algorithm for automatic segmentation of the prostate gland on a large cohort of patient images.

METHODS AND MATERIALS

Planning-CT data sets for 1114 patients with prostate cancer were retrospectively selected and divided into 2 groups. Group A contained 1104 data sets, with 1 physician-generated prostate gland contour for each data set. Among these image sets, 771 were used for training, 193 for validation, and 140 for testing. Group B contained 10 data sets, each including prostate contours delineated by 5 independent physicians and a consensus contour generated using the STAPLE method in the CERR software package. All images were resampled to a spatial resolution of 1 × 1 × 1.5 mm. A region (128 × 128 × 64 voxels) containing the prostate was selected to train a DNN. The best-performing model on the validation data sets was used to segment the prostate on all testing images. Results were compared between DNN and physician-generated contours using the Dice similarity coefficient, Hausdorff distances, regional contour distances, and center-of-mass distances.

RESULTS

The mean Dice similarity coefficients between DNN-based prostate segmentation and physician-generated contours for test data in Group A, Group B, and Group B-consensus were 0.85 ± 0.06 (range, 0.65-0.93), 0.85 ± 0.04 (range, 0.80-0.91), and 0.88 ± 0.03 (range, 0.82-0.92), respectively. The Hausdorff distance was 7.0 ± 3.5 mm, 7.3 ± 2.0 mm, and 6.3 ± 2.0 mm for Group A, Group B, and Group B-consensus, respectively. The mean center-of-mass distances for all 3 data set groups were within 5 mm.

CONCLUSIONS

A DNN-based algorithm was used to automatically segment the prostate for a large cohort of patients with prostate cancer. DNN-based prostate segmentations were compared to the consensus contour for a smaller group of patients; the agreement between DNN segmentations and consensus contour was similar to the agreement reported in a previous study. Clinical use of DNNs is promising, but further investigation is warranted.

摘要

目的

深度学习神经网络(DNN)的最新进展为其在自动图像分割中的应用提供了机会。我们评估了一种基于 DNN 的算法,用于对大量患者图像的前列腺进行自动分割。

方法与材料

回顾性选择了 1114 例前列腺癌患者的计划 CT 数据集,并将其分为 2 组。A 组包含 1104 个数据集,每个数据集都有 1 个医生生成的前列腺轮廓。在这些图像集中,771 个用于训练,193 个用于验证,140 个用于测试。B 组包含 10 个数据集,每个数据集都包含由 5 位独立医生勾画的前列腺轮廓和使用 CERR 软件包中的 STAPLE 方法生成的共识轮廓。所有图像均重采样至空间分辨率为 1×1×1.5mm。选择包含前列腺的区域(128×128×64 个体素)来训练 DNN。在验证数据集上表现最佳的模型用于分割所有测试图像的前列腺。使用 Dice 相似系数、Hausdorff 距离、区域轮廓距离和质心距离比较 DNN 和医生生成轮廓之间的结果。

结果

A 组、B 组和 B 组共识测试数据的基于 DNN 的前列腺分割与医生生成轮廓之间的平均 Dice 相似系数分别为 0.85±0.06(范围,0.65-0.93)、0.85±0.04(范围,0.80-0.91)和 0.88±0.03(范围,0.82-0.92)。A 组、B 组和 B 组共识的 Hausdorff 距离分别为 7.0±3.5mm、7.3±2.0mm 和 6.3±2.0mm。所有 3 个数据集组的质心距离平均值均在 5mm 以内。

结论

使用基于 DNN 的算法自动分割了大量前列腺癌患者的前列腺。将基于 DNN 的前列腺分割与较小患者组的共识轮廓进行了比较;DNN 分割与共识轮廓之间的一致性与之前的研究报告中的一致性相似。DNN 的临床应用很有前景,但需要进一步研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验