Huang Sijuan, Wu Jingheng, Lin Xi, Wang Guangyu, Song Ting, Chen Li, Jia Lecheng, Cao Qian, Liu Ruiqi, Liu Yang, Yang Xin, Huang Xiaoyan, He Liru
Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
United Laboratory of Frontier Radiotherapy Technology of Sun Yat-sen University & Chinese Academy of Sciences Ion Medical Technology Co., Ltd., Guangzhou 510060, China.
Bioengineering (Basel). 2025 Jun 6;12(6):620. doi: 10.3390/bioengineering12060620.
The objective of this study was to develop and assess the clinical feasibility of auto-segmentation and auto-planning methodologies for automated radiotherapy in prostate cancer. : A total of 166 patients were used to train a 3D Unet model for segmentation of the gross tumor volume (GTV), clinical tumor volume (CTV), nodal CTV (CTVnd), and organs at risk (OARs). Performance was assessed by the Dice similarity coefficient (), the , , , the 95% Hausdorff distance (%), and the volumetric revision degree (). An auto-planning network based on a 3D Unet was trained on 77 treatment plans derived from the 166 patients. Dosimetric differences and clinical acceptability of the auto-plans were studied. The effect of OAR editing on dosimetry was also evaluated. : On an independent set of 50 cases, the auto-segmentation process took 1 min 20 s per case. The for GTV, CTV, and CTVnd were 0.87, 0.88, and 0.82, respectively, with s ranging from 0.09 to 0.14. The segmentation of OARs demonstrated high accuracy ( ≥ 0.83, ≈ 1.0). The auto-planning process required 1-3 optimization iterations for 50%, 40%, and 10% of cases, respectively, and exhibited significant better conformity ( ≤ 0.01) and OAR sparing ( ≤ 0.03) while maintaining comparable target coverage. Only 6.7% of auto-plans were deemed unacceptable compared to 20% of manual plans, with 75% of auto-plans considered superior. Notably, the editing of OARs had no significant impact on doses. The accuracy of auto-segmentation is comparable to that of manual segmentation, and the auto-planning offers equivalent or better OAR protection, meeting the requirements of online automated radiotherapy and facilitating its clinical application.
本研究的目的是开发并评估前列腺癌自动放疗中自动分割和自动计划方法的临床可行性。总共166例患者用于训练一个3D U-Net模型,以分割大体肿瘤体积(GTV)、临床靶体积(CTV)、淋巴结临床靶体积(CTVnd)和危及器官(OAR)。通过Dice相似系数()、、、95%豪斯多夫距离(%)和体积修正度()评估性能。基于3D U-Net的自动计划网络在从166例患者中得出的77个治疗计划上进行训练。研究了自动计划的剂量差异和临床可接受性。还评估了OAR编辑对剂量学的影响。在一组独立的50个病例中,自动分割过程每个病例耗时1分20秒。GTV、CTV和CTVnd的分别为0.87、0.88和0.82,标准差范围为0.09至0.14。OAR的分割显示出高精度(≥0.83,≈1.0)。自动计划过程分别对50%、40%和10%的病例需要1 - 3次优化迭代,并且在保持可比的靶区覆盖的同时,显示出显著更好的适形性(≤0.01)和OAR保护(≤0.03)。与20%的手动计划相比,只有6.7%的自动计划被认为不可接受,75%的自动计划被认为更优。值得注意的是,OAR编辑对剂量没有显著影响。自动分割的准确性与手动分割相当,并且自动计划提供了同等或更好的OAR保护,满足在线自动放疗的要求并促进其临床应用。