Suppr超能文献

通过屏蔽蛋白质内氢键提高药物驻留时间:以CCR2拮抗剂为例的研究。

Enhancing Drug Residence Time by Shielding of Intra-Protein Hydrogen Bonds: A Case Study on CCR2 Antagonists.

作者信息

Magarkar Aniket, Schnapp Gisela, Apel Anna-Katharina, Seeliger Daniel, Tautermann Christofer S

机构信息

Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, D-88397 Biberach a.d. Riss, Germany.

出版信息

ACS Med Chem Lett. 2019 Feb 7;10(3):324-328. doi: 10.1021/acsmedchemlett.8b00590. eCollection 2019 Mar 14.

Abstract

The target residence time (RT) for a given ligand is one of the important parameters that have to be optimized during drug design. It is well established that shielding the receptor-ligand hydrogen bond (H-bond) interactions from water has been one of the factors in increasing ligand RT. Building on this foundation, here we report that shielding an intra-protein H-bond, which confers rigidity to the binding pocket and which is not directly involved in drug-receptor interactions, can strongly influence RT for CCR2 antagonists. Based on our recently solved CCR2 structure with and molecular dynamics (MD) simulations, we show that the RT for this and structurally related ligands is directly dependent on the shielding of the Tyr120-Glu291 H-bond from the water. If solvated this H-bond is often broken, making the binding pocket flexible and leading to shorter RT.

摘要

给定配体的目标驻留时间(RT)是药物设计过程中必须优化的重要参数之一。众所周知,使受体-配体氢键(H键)相互作用免受水的影响是增加配体RT的因素之一。在此基础上,我们在此报告,屏蔽赋予结合口袋刚性且不直接参与药物-受体相互作用的蛋白质内部H键,可强烈影响CCR2拮抗剂的RT。基于我们最近解析的CCR2结构以及分子动力学(MD)模拟,我们表明该配体及结构相关配体的RT直接取决于Tyr120-Glu291 H键免受水的影响。如果该H键被溶剂化,它常常会断裂,使结合口袋变得灵活并导致RT缩短。

相似文献

1
Enhancing Drug Residence Time by Shielding of Intra-Protein Hydrogen Bonds: A Case Study on CCR2 Antagonists.
ACS Med Chem Lett. 2019 Feb 7;10(3):324-328. doi: 10.1021/acsmedchemlett.8b00590. eCollection 2019 Mar 14.
2
Structure prediction and molecular dynamics simulations of a G-protein coupled receptor: human CCR2 receptor.
J Biomol Struct Dyn. 2013;31(7):694-715. doi: 10.1080/07391102.2012.707460. Epub 2012 Aug 22.
3
Receptor rigidity and ligand mobility in trypsin-ligand complexes.
Proteins. 2005 Feb 1;58(2):407-17. doi: 10.1002/prot.20326.
5
Steered molecular dynamics simulation on the binding of NNRTI to HIV-1 RT.
Biophys J. 2003 Jun;84(6):3547-63. doi: 10.1016/S0006-3495(03)75088-7.
6
Agonist and antagonist binding to the nuclear vitamin D receptor: dynamics, mutation effects and functional implications.
In Silico Pharmacol. 2013 Feb 12;1:2. doi: 10.1186/2193-9616-1-2. eCollection 2013.
8
Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists.
Nature. 2016 Dec 15;540(7633):458-461. doi: 10.1038/nature20605. Epub 2016 Dec 7.
9
Elucidation of binding sites of dual antagonists in the human chemokine receptors CCR2 and CCR5.
Mol Pharmacol. 2009 Jun;75(6):1325-36. doi: 10.1124/mol.108.053470. Epub 2009 Mar 18.

引用本文的文献

2
Inhibitor design for TMPRSS2: insights from computational analysis of its backbone hydrogen bonds using a simple descriptor.
Eur Biophys J. 2024 Feb;53(1-2):27-46. doi: 10.1007/s00249-023-01695-4. Epub 2023 Dec 29.
3
Molecular determinants of antagonist interactions with chemokine receptors CCR2 and CCR5.
bioRxiv. 2024 Feb 12:2023.11.15.567150. doi: 10.1101/2023.11.15.567150.
4
The Impact of the Secondary Binding Pocket on the Pharmacology of Class A GPCRs.
Front Pharmacol. 2022 Mar 9;13:847788. doi: 10.3389/fphar.2022.847788. eCollection 2022.
5
6
How Do Molecular Dynamics Data Complement Static Structural Data of GPCRs.
Int J Mol Sci. 2020 Aug 18;21(16):5933. doi: 10.3390/ijms21165933.

本文引用的文献

2
Protein conformational flexibility modulates kinetics and thermodynamics of drug binding.
Nat Commun. 2017 Dec 22;8(1):2276. doi: 10.1038/s41467-017-02258-w.
3
Drug-Target Kinetics in Drug Discovery.
ACS Chem Neurosci. 2018 Jan 17;9(1):29-39. doi: 10.1021/acschemneuro.7b00185. Epub 2017 Jul 14.
5
Rational Design of Thermodynamic and Kinetic Binding Profiles by Optimizing Surface Water Networks Coating Protein-Bound Ligands.
J Med Chem. 2016 Dec 8;59(23):10530-10548. doi: 10.1021/acs.jmedchem.6b00998. Epub 2016 Nov 30.
6
Impact, determination and prediction of drug-receptor residence times for GPCRs.
Curr Opin Pharmacol. 2016 Oct;30:22-26. doi: 10.1016/j.coph.2016.07.004. Epub 2016 Jul 16.
7
The drug-target residence time model: a 10-year retrospective.
Nat Rev Drug Discov. 2016 Feb;15(2):87-95. doi: 10.1038/nrd.2015.18. Epub 2015 Dec 18.
8
The Role of Target Binding Kinetics in Drug Discovery.
ChemMedChem. 2015 Nov;10(11):1793-6. doi: 10.1002/cmdc.201500310. Epub 2015 Aug 25.
9
Decoding the Role of Water Dynamics in Ligand-Protein Unbinding: CRF1R as a Test Case.
J Chem Inf Model. 2015 Sep 28;55(9):1857-66. doi: 10.1021/acs.jcim.5b00440. Epub 2015 Sep 10.
10
CCL2-CCR2 Signaling in Disease Pathogenesis.
Endocr Metab Immune Disord Drug Targets. 2015;15(2):105-18. doi: 10.2174/1871530315666150316120920.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验