Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, Russia.
Russian Quantum Center, Moscow, Russia.
J Biophotonics. 2019 Nov;12(11):e201800432. doi: 10.1002/jbio.201800432. Epub 2019 Jul 12.
Methods of nonlinear optics provide a vast arsenal of tools for label-free brain imaging, offering a unique combination of chemical specificity, the ability to detect fine morphological features, and an unprecedentedly high, subdiffraction spatial resolution. While these techniques provide a rapidly growing platform for the microscopy of neurons and fine intraneural structures, optical imaging of astroglia still largely relies on filament-protein-antibody staining, subject to limitations and difficulties especially severe in live-brain studies. Once viewed as an ancillary, inert brain scaffold, astroglia are being promoted, as a part of an ongoing paradigm shift in neurosciences, into the role of a key active agent of intercellular communication and information processing, playing a significant role in brain functioning under normal and pathological conditions. Here, we show that methods of nonlinear optics provide a unique resource to address long-standing challenges in label-free astroglia imaging. We demonstrate that, with a suitable beam-focusing geometry and careful driver-pulse compression, microscopy of second-harmonic generation (SHG) can enable a high-resolution label-free imaging of fibrillar structures of astrocytes, most notably astrocyte processes and their endfeet. SHG microscopy of astrocytes is integrated in our approach with nonlinear-optical imaging of red blood cells based on third-harmonic generation (THG) enhanced by a three-photon resonance with the Soret band of hemoglobin. With astroglia and red blood cells providing two physically distinct imaging contrasts in SHG and THG channels, a parallel detection of the second and third harmonics enables a high-contrast, high-resolution, stain-free stereoimaging of gliovascular interfaces in the central nervous system. Transverse scans of the second and third harmonics are shown to resolve an ultrafine texture of blood-vessel walls and astrocyte-process endfeet on gliovascular interfaces with a spatial resolution within 1 μm at focusing depths up to 20 μm inside a brain.
方法的非线性光学提供了一个庞大的工具库,用于无标记的大脑成像,提供了独特的组合,化学特异性,能够检测到精细的形态特征和前所未有的高,亚衍射空间分辨率。虽然这些技术为神经元和精细的神经内结构的显微镜提供了一个快速增长的平台,但神经胶质细胞的光学成像仍然在很大程度上依赖于丝状蛋白-抗体染色,受到限制和困难,特别是在活脑研究中更为严重。曾经被视为辅助的、惰性的大脑支架,星形胶质细胞正在被推广,作为神经科学中一个正在进行的范式转变的一部分,成为细胞间通讯和信息处理的关键活性物质的角色,在正常和病理条件下对大脑功能发挥重要作用。在这里,我们表明,非线性光学的方法提供了一个独特的资源来解决无标记神经胶质细胞成像的长期挑战。我们证明,通过适当的光束聚焦几何形状和仔细的驱动脉冲压缩,二次谐波产生(SHG)的显微镜可以实现星形胶质细胞的纤维状结构的高分辨率无标记成像,特别是星形胶质细胞突起及其终足。我们的方法将星形胶质细胞的 SHG 显微镜与基于三光子共振的红细胞的非线性光学成像结合在一起,血红蛋白的 Soret 带增强了三倍频产生(THG)。由于星形胶质细胞和红细胞在 SHG 和 THG 通道中提供了两种物理上不同的成像对比,因此第二和第三谐波的平行检测可以实现中枢神经系统中血管界面的高对比度、高分辨率、无染色的立体成像。第二和第三谐波的横向扫描被证明可以在聚焦深度为 20 μm 以内的大脑内分辨出血管壁和血管胶质界面上的星形胶质细胞突起终足的超细微纹理,分辨率在 1 μm 以内。