Suppr超能文献

无标记活脑成像与基于三次谐波产生显微镜的靶向修补。

Label-free live brain imaging and targeted patching with third-harmonic generation microscopy.

机构信息

Biophysics Group, Institute for Lasers, Life, and Biophotonics Amsterdam, VU University, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.

出版信息

Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):5970-5. doi: 10.1073/pnas.1018743108. Epub 2011 Mar 28.

Abstract

The ability to visualize neurons inside living brain tissue is a fundamental requirement in neuroscience and neurosurgery. Especially the development of a noninvasive probe of brain morphology with micrometer-scale resolution is highly desirable, as it would provide a noninvasive approach to optical biopsies in diagnostic medicine. Two-photon laser-scanning microscopy (2PLSM) is a powerful tool in this regard, and has become the standard for minimally invasive high-resolution imaging of living biological samples. However, while 2PLSM-based optical methods provide sufficient resolution, they have been hampered by the requirement for fluorescent dyes to provide image contrast. Here we demonstrate high-contrast imaging of live brain tissue at cellular resolution, without the need for fluorescent probes, using optical third-harmonic generation (THG). We exploit the specific geometry and lipid content of brain tissue at the cellular level to achieve partial phase matching of THG, providing an alternative contrast mechanism to fluorescence. We find that THG brain imaging allows rapid, noninvasive label-free imaging of neurons, white-matter structures, and blood vessels simultaneously. Furthermore, we exploit THG-based imaging to guide micropipettes towards designated neurons inside live tissue. This work is a major step towards label-free microscopic live brain imaging, and opens up possibilities for the development of laser-guided microsurgery techniques in the living brain.

摘要

在神经科学和神经外科中,能够对活体脑组织内的神经元进行可视化是一项基本要求。特别是,非常需要开发出具有亚微米分辨率的非侵入性脑形态探针,因为它将为诊断医学中的光学活组织检查提供一种非侵入性方法。双光子激光扫描显微镜(2PLSM)在这方面是一种强大的工具,已成为活体生物样本微创高分辨率成像的标准。然而,尽管基于 2PLSM 的光学方法提供了足够的分辨率,但它们受到需要荧光染料提供图像对比度的限制。在这里,我们展示了使用光学三次谐波产生(THG)在不使用荧光探针的情况下,以细胞分辨率对活脑组织进行高对比度成像。我们利用细胞水平上脑组织的特定几何形状和脂质含量来实现 THG 的部分相位匹配,提供了一种替代荧光的对比度机制。我们发现,THG 脑成像允许快速、非侵入性、无标记的神经元、白质结构和血管同时成像。此外,我们利用基于 THG 的成像来引导微管针对活体组织内指定的神经元。这项工作是迈向无标记微观活体脑成像的重要一步,并为活体脑中的激光引导微创手术技术的发展开辟了可能性。

相似文献

引用本文的文献

5
Breaking Abbe's diffraction limit with harmonic deactivation microscopy.利用谐波失活显微镜突破阿贝衍射极限。
Sci Adv. 2024 Nov 15;10(46):eadp3056. doi: 10.1126/sciadv.adp3056. Epub 2024 Nov 13.

本文引用的文献

2
9
Third harmonic generation microscopy.三次谐波产生显微镜术
Opt Express. 1998 Oct 26;3(9):315-24. doi: 10.1364/oe.3.000315.
10
Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging.红外多光子显微镜:亚细胞分辨深度组织成像。
Curr Opin Biotechnol. 2009 Feb;20(1):54-62. doi: 10.1016/j.copbio.2009.02.008. Epub 2009 Mar 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验