Suppr超能文献

用于估计小动物多光谱光声成像造影剂最小可检测浓度的合成数据框架。

Synthetic data framework to estimate the minimum detectable concentration of contrast agents for multispectral optoacoustic imaging of small animals.

作者信息

Yang Hong, Olefir Ivan, Tzoumas Stratis, Ntziachristos Vasilis

机构信息

Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany.

Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Munich, Germany.

出版信息

J Biophotonics. 2019 Aug;12(8):e201900021. doi: 10.1002/jbio.201900021. Epub 2019 May 2.

Abstract

The concentrations of contrast agents for optoacoustic imaging of small animals must usually be optimized through extensive pilot experiments on a case-by-case basis. The present work describes a streamlined approach for determining the minimum detectable concentration (MDC) of a contrast agent given experimental conditions and imaging system parameters. The developed Synthetic Data Framework (SDF) allows estimation of MDCs of various contrast agents under different tissue conditions without extensive animal experiments. The SDF combines simulated optoacoustic signals from exogenously administered contrast agents with in vivo experimental signals from background tissue to generate realistic synthetic multispectral optoacoustic images. In this paper, the SDF is validated with in vivo measurements and demonstrates close agreement between SDF synthetic data and experimental data in terms of both image intensity and MDCs. Use of the SDF to estimate MDCs for fluorescent dyes and nanoparticles at different tissue depths and for imaging lesions of different sizes is illustrated.

摘要

用于小动物光声成像的造影剂浓度通常必须根据具体情况通过大量的预实验进行优化。本研究描述了一种简化方法,可在给定实验条件和成像系统参数的情况下确定造影剂的最小可检测浓度(MDC)。所开发的合成数据框架(SDF)能够在无需进行大量动物实验的情况下,估算不同组织条件下各种造影剂的MDC。SDF将外源性施用造影剂的模拟光声信号与背景组织的体内实验信号相结合,以生成逼真的合成多光谱光声图像。本文通过体内测量对SDF进行了验证,结果表明SDF合成数据与实验数据在图像强度和MDC方面均具有高度一致性。文中还展示了如何使用SDF来估算不同组织深度下荧光染料和纳米颗粒的MDC,以及对不同大小病变进行成像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验