Suppr超能文献

基于深度学习的电噪声去除技术可实现深层组织中的高光谱光声对比度。

Deep-Learning-Based Electrical Noise Removal Enables High Spectral Optoacoustic Contrast in Deep Tissue.

作者信息

Dehner Christoph, Olefir Ivan, Chowdhury Kaushik Basak, Justel Dominik, Ntziachristos Vasilis

出版信息

IEEE Trans Med Imaging. 2022 Nov;41(11):3182-3193. doi: 10.1109/TMI.2022.3180115. Epub 2022 Oct 27.

Abstract

Image contrast in multispectral optoacoustic tomography (MSOT) can be severely reduced by electrical noise and interference in the acquired optoacoustic signals. Previously employed signal processing techniques have proven insufficient to remove the effects of electrical noise because they typically rely on simplified models and fail to capture complex characteristics of signal and noise. Moreover, they often involve time-consuming processing steps that are unsuited for real-time imaging applications. In this work, we develop and demonstrate a discriminative deep learning approach to separate electrical noise from optoacoustic signals prior to image reconstruction. The proposed deep learning algorithm is based on two key features. First, it learns spatiotemporal correlations in both noise and signal by using the entire optoacoustic sinogram as input. Second, it employs training on a large dataset of experimentally acquired pure noise and synthetic optoacoustic signals. We validated the ability of the trained model to accurately remove electrical noise on synthetic data and on optoacoustic images of a phantom and the human breast. We demonstrate significant enhancements of morphological and spectral optoacoustic images reaching 19% higher blood vessel contrast and localized spectral contrast at depths of more than 2 cm for images acquired in vivo. We discuss how the proposed denoising framework is applicable to clinical multispectral optoacoustic tomography and suitable for real-time operation.

摘要

在多光谱光声断层扫描(MSOT)中,采集到的光声信号中的电噪声和干扰会严重降低图像对比度。先前采用的信号处理技术已被证明不足以消除电噪声的影响,因为它们通常依赖于简化模型,无法捕捉信号和噪声的复杂特性。此外,它们通常涉及耗时的处理步骤,不适用于实时成像应用。在这项工作中,我们开发并展示了一种判别式深度学习方法,用于在图像重建之前将电噪声与光声信号分离。所提出的深度学习算法基于两个关键特征。首先,它通过将整个光声正弦图作为输入来学习噪声和信号中的时空相关性。其次,它在大量实验获取的纯噪声和合成光声信号数据集上进行训练。我们验证了训练模型在合成数据以及体模和人体乳房的光声图像上准确去除电噪声的能力。我们展示了形态学和光谱光声图像的显著增强,对于体内采集的图像,血管对比度提高了19%,在超过2厘米的深度处实现了局部光谱对比度增强。我们讨论了所提出的去噪框架如何适用于临床多光谱光声断层扫描并适用于实时操作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验