Suppr超能文献

将硫共聚物共价限制在石墨烯片上可提供具有快速阴极动力学的超稳定锂硫电池。

Covalent Confinement of Sulfur Copolymers onto Graphene Sheets Affords Ultrastable Lithium-Sulfur Batteries with Fast Cathode Kinetics.

作者信息

Ma Junpeng, Fan Jingbiao, Chen Shang, Yang Xinyue, Hui Kwun Nam, Zhang Hongwen, Bielawski Christopher W, Geng Jianxin

机构信息

Experimental Teaching Center, School of Materials Science and Engineering , Changzhou University , Changzhou , Jiangsu 213100 , China.

College of Energy, State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , 15 North Third Ring East Road , Chaoyang District, Beijing 100029 , China.

出版信息

ACS Appl Mater Interfaces. 2019 Apr 10;11(14):13234-13243. doi: 10.1021/acsami.9b00214. Epub 2019 Mar 29.

Abstract

Lithium-sulfur (Li-S) batteries have received significant attention due to the high theoretical specific capacity of sulfur (1675 mA h g). However, the practical applications are often handicapped by sluggish electrochemical kinetics and the "shuttle effect" of electrochemical intermediate polysulfides. Herein, we propose an in-situ copolymerization strategy for covalently confining a sulfur-containing copolymer onto reduced graphene oxide (RGO) to overcome the aforementioned challenges. The copolymerization was performed by heating elemental sulfur and isopropenylphenyl-functionalized RGO to afford a sulfur-containing copolymer, that is, RGO- g-poly(S- r-IDBI), which is featured by a high sulfur content and uniform distribution of the poly(S- r-IDBI) on RGO sheets. The covalent confinement of poly(S- r-IDBI) onto RGO sheets not only enhances the Li diffusion coefficients by nearly 1 order of magnitude, but also improves the mechanical properties of the cathodes and suppresses the shuttle effect of polysulfides. As a result, the RGO- g-poly(S- r-IDBI) cathode exhibits an enhanced sulfur utilization rate (10% higher than that of an elemental sulfur cathode at 0.1C), an improved rate capacity (688 mA h g for the RGO- g-poly(S- r-IDBI) cathode vs 400 mA h g for an elemental sulfur cathode at 1C), and a high cycling stability (a capacity decay of 0.021% per cycle, less than one-tenth of that measured for an elemental sulfur cathode).

摘要

锂硫(Li-S)电池因硫的理论比容量高(1675 mA h g)而备受关注。然而,实际应用常常受到缓慢的电化学动力学和电化学中间体多硫化物的“穿梭效应”的阻碍。在此,我们提出一种原位共聚策略,将含硫共聚物共价限制在还原氧化石墨烯(RGO)上,以克服上述挑战。通过加热元素硫和异丙烯基苯基功能化的RGO进行共聚反应,得到一种含硫共聚物,即RGO-g-聚(S-r-IDBI),其特点是硫含量高且聚(S-r-IDBI)在RGO片上分布均匀。聚(S-r-IDBI)在RGO片上的共价限制不仅使锂扩散系数提高了近1个数量级,还改善了阴极的机械性能并抑制了多硫化物的穿梭效应。结果,RGO-g-聚(S-r-IDBI)阴极表现出提高的硫利用率(在0.1C时比元素硫阴极高10%)、改善的倍率性能(在1C时,RGO-g-聚(S-r-IDBI)阴极的容量为688 mA h g,而元素硫阴极的容量为400 mA h g)以及高循环稳定性(每循环容量衰减0.021%,不到元素硫阴极测量值的十分之一)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验