Suppr超能文献

含酞嗪酮的共价三嗪框架对硫物种的协同共价和空间限制用于锂硫电池的超高性能

Synergetic Covalent and Spatial Confinement of Sulfur Species by Phthalazinone-Containing Covalent Triazine Frameworks for Ultrahigh Performance of Li-S Batteries.

作者信息

Guan Ruiteng, Zhong Lei, Wang Shuanjin, Han Dongmei, Xiao Min, Sun Luyi, Meng Yuezhong

机构信息

School of Physics , Sun Yat-sen University , Guangzhou 510275 , P. R. China.

The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering , Sun Yat-sen University , Guangzhou 510275 , P. R. China.

出版信息

ACS Appl Mater Interfaces. 2020 Feb 19;12(7):8296-8305. doi: 10.1021/acsami.9b21481. Epub 2020 Feb 7.

Abstract

Lithium-sulfur (Li-S) batteries severely suffer from the shuttling of soluble polysulfides intermediates, insulation of sulfur and lithium sulfides, and volumetric expansion of sulfur electrodes, which result in the fast capacity decay and low utilization of active materials. To overcome these issues, a new type of porous phthalazinone-based covalent triazine frameworks (P-CTFs) with inherent N and O atoms has been in situ grown onto conductive reduced graphene oxide (rGO) by the sulfur-mediated cyclization of dinitrile monomers to afford the S/P-CTF@rGO hybrids. The well-designed structure endows the S/P-CTF@rGO composites with several features for enhanced Li-S batteries: (i) the nanoporous structure can spatially trap the sulfur species within the P-CTFs; (ii) the covalent binding of sulfur and polar groups of phthalazinone and triazine in P-CTFs exhibits strong chemical attachment and adsorption with polysulfides and further limits the diffusion of polysulfides; (iii) the conductive rGO and semiconductive P-CTFs help faster electronic transportation and accelerate the electrochemical process. Therefore, the S/P-CTF@rGO cathodes show greatly enhanced electrochemical performances with a high initial specific capacity of 1130 mAh g at 0.5C and a good capacity retention of 81.4% after 500 cycles, indicating only 0.04% degradation per cycle.

摘要

锂硫(Li-S)电池严重受限于可溶性多硫化物中间体的穿梭、硫和硫化锂的绝缘性以及硫电极的体积膨胀,这些问题导致电池快速容量衰减以及活性材料利用率低。为克服这些问题,通过二腈单体的硫介导环化反应,一种具有固有氮和氧原子的新型多孔酞嗪酮基共价三嗪框架(P-CTF)原位生长在导电还原氧化石墨烯(rGO)上,从而得到S/P-CTF@rGO杂化物。精心设计的结构赋予S/P-CTF@rGO复合材料多项增强锂硫电池性能的特性:(i)纳米多孔结构可在空间上捕获P-CTF内的硫物种;(ii)P-CTF中硫与酞嗪酮和三嗪的极性基团之间的共价结合表现出与多硫化物的强化学附着和吸附作用,并进一步限制多硫化物的扩散;(iii)导电的rGO和半导电的P-CTF有助于更快的电子传输并加速电化学过程。因此,S/P-CTF@rGO阴极表现出大大增强的电化学性能,在0.5C下初始比容量高达1130 mAh g,500次循环后容量保持率良好,为81.4%,表明每次循环仅降解0.04%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验