IEEE Trans Neural Netw Learn Syst. 2020 Jan;31(1):53-65. doi: 10.1109/TNNLS.2019.2899386. Epub 2019 Mar 15.
The probabilistic Bayesian inference of real-time input data is becoming more popular, and the importance of semisupervised learning is growing. We present a classification restricted Boltzmann machine (ClassRBM)-based hardware accelerator with on-chip semisupervised learning and Bayesian inference capability. ClassRBM is a specific type of Markov network that can perform classification tasks and reconstruct its input data. ClassRBM has several advantages in terms of hardware implementation compared to other backpropagation-based neural networks. However, its accuracy is relatively low compared to backpropagation-based learning. To improve the accuracy of ClassRBM, we propose the multi-neuron-per-class (multi-NPC) voting scheme. We also reveal that the contrastive divergence (CD) algorithm, which is commonly used to train RBM, shows poor performance in this multi-NPC ClassRBM. As an alternative, we propose an asymmetric contrastive divergence (ACD) training algorithm that improves the accuracy of multi-NPC ClassRBM. With the ACD learning algorithm, ClassRBM operates in the form of a combination of Markov Chain training and Bayesian inference. The experimental results on a field-programmable gate array (FPGA) board for a Modified National Institute of Standards and Technology data set confirm that the inference accuracy of the proposed ACD algorithm is 5.82% higher for a supervised learning case and 12.78% higher for a 1% labeled semisupervised learning case than the conventional CD algorithm. Also, the GeCo ver.2 hardware implemented on a Xilinx ZCU102 FPGA board was 349.04 times faster than the C simulation on CPU.
实时输入数据的概率贝叶斯推理越来越流行,半监督学习的重要性也在不断增加。我们提出了一种基于分类受限玻尔兹曼机(ClassRBM)的硬件加速器,具有片上半监督学习和贝叶斯推理能力。ClassRBM 是一种特定类型的马尔可夫网络,可执行分类任务并重建其输入数据。与基于反向传播的神经网络相比,ClassRBM 在硬件实现方面具有几个优势。然而,与基于反向传播的学习相比,其准确性相对较低。为了提高 ClassRBM 的准确性,我们提出了多神经元/类(multi-NPC)投票方案。我们还揭示了对比散度(CD)算法,它通常用于训练 RBM,但在这种多 NPC ClassRBM 中表现不佳。作为替代方案,我们提出了一种非对称对比散度(ACD)训练算法,可提高多 NPC ClassRBM 的准确性。使用 ACD 学习算法,ClassRBM 以马尔可夫链训练和贝叶斯推理的组合形式运行。在 FPGA 板上对修改后的国家标准与技术研究所数据集进行的实验结果表明,与传统的 CD 算法相比,所提出的 ACD 算法在有监督学习情况下的推理准确性提高了 5.82%,在 1%标记的半监督学习情况下提高了 12.78%。此外,基于 Xilinx ZCU102 FPGA 板的 GeCo ver.2 硬件比 CPU 上的 C 模拟快 349.04 倍。