Suppr超能文献

GeCo:用于片上半监督学习和贝叶斯推理的分类受限玻尔兹曼机硬件。

GeCo: Classification Restricted Boltzmann Machine Hardware for On-Chip Semisupervised Learning and Bayesian Inference.

出版信息

IEEE Trans Neural Netw Learn Syst. 2020 Jan;31(1):53-65. doi: 10.1109/TNNLS.2019.2899386. Epub 2019 Mar 15.

Abstract

The probabilistic Bayesian inference of real-time input data is becoming more popular, and the importance of semisupervised learning is growing. We present a classification restricted Boltzmann machine (ClassRBM)-based hardware accelerator with on-chip semisupervised learning and Bayesian inference capability. ClassRBM is a specific type of Markov network that can perform classification tasks and reconstruct its input data. ClassRBM has several advantages in terms of hardware implementation compared to other backpropagation-based neural networks. However, its accuracy is relatively low compared to backpropagation-based learning. To improve the accuracy of ClassRBM, we propose the multi-neuron-per-class (multi-NPC) voting scheme. We also reveal that the contrastive divergence (CD) algorithm, which is commonly used to train RBM, shows poor performance in this multi-NPC ClassRBM. As an alternative, we propose an asymmetric contrastive divergence (ACD) training algorithm that improves the accuracy of multi-NPC ClassRBM. With the ACD learning algorithm, ClassRBM operates in the form of a combination of Markov Chain training and Bayesian inference. The experimental results on a field-programmable gate array (FPGA) board for a Modified National Institute of Standards and Technology data set confirm that the inference accuracy of the proposed ACD algorithm is 5.82% higher for a supervised learning case and 12.78% higher for a 1% labeled semisupervised learning case than the conventional CD algorithm. Also, the GeCo ver.2 hardware implemented on a Xilinx ZCU102 FPGA board was 349.04 times faster than the C simulation on CPU.

摘要

实时输入数据的概率贝叶斯推理越来越流行,半监督学习的重要性也在不断增加。我们提出了一种基于分类受限玻尔兹曼机(ClassRBM)的硬件加速器,具有片上半监督学习和贝叶斯推理能力。ClassRBM 是一种特定类型的马尔可夫网络,可执行分类任务并重建其输入数据。与基于反向传播的神经网络相比,ClassRBM 在硬件实现方面具有几个优势。然而,与基于反向传播的学习相比,其准确性相对较低。为了提高 ClassRBM 的准确性,我们提出了多神经元/类(multi-NPC)投票方案。我们还揭示了对比散度(CD)算法,它通常用于训练 RBM,但在这种多 NPC ClassRBM 中表现不佳。作为替代方案,我们提出了一种非对称对比散度(ACD)训练算法,可提高多 NPC ClassRBM 的准确性。使用 ACD 学习算法,ClassRBM 以马尔可夫链训练和贝叶斯推理的组合形式运行。在 FPGA 板上对修改后的国家标准与技术研究所数据集进行的实验结果表明,与传统的 CD 算法相比,所提出的 ACD 算法在有监督学习情况下的推理准确性提高了 5.82%,在 1%标记的半监督学习情况下提高了 12.78%。此外,基于 Xilinx ZCU102 FPGA 板的 GeCo ver.2 硬件比 CPU 上的 C 模拟快 349.04 倍。

相似文献

1
GeCo: Classification Restricted Boltzmann Machine Hardware for On-Chip Semisupervised Learning and Bayesian Inference.
IEEE Trans Neural Netw Learn Syst. 2020 Jan;31(1):53-65. doi: 10.1109/TNNLS.2019.2899386. Epub 2019 Mar 15.
2
Supervised Contrastive Learning Framework and Hardware Implementation of Learned ResNet for Real-Time Respiratory Sound Classification.
IEEE Trans Biomed Circuits Syst. 2025 Feb;19(1):185-195. doi: 10.1109/TBCAS.2024.3409584. Epub 2025 Feb 11.
3
DeepX: Deep Learning Accelerator for Restricted Boltzmann Machine Artificial Neural Networks.
IEEE Trans Neural Netw Learn Syst. 2018 May;29(5):1441-1453. doi: 10.1109/TNNLS.2017.2665555. Epub 2017 Mar 8.
4
An FPGA implementation of Bayesian inference with spiking neural networks.
Front Neurosci. 2024 Jan 5;17:1291051. doi: 10.3389/fnins.2023.1291051. eCollection 2023.
5
FPGA implementation of a pyramidal Weightless Neural Networks learning system.
Int J Neural Syst. 2003 Aug;13(4):225-37. doi: 10.1142/S012906570300156X.
6
Particle MCMC algorithms and architectures for accelerating inference in state-space models.
Int J Approx Reason. 2017 Apr;83:413-433. doi: 10.1016/j.ijar.2016.10.011.
7
LCD: A Fast Contrastive Divergence Based Algorithm for Restricted Boltzmann Machine.
Neural Netw. 2018 Dec;108:399-410. doi: 10.1016/j.neunet.2018.08.018. Epub 2018 Sep 11.
8
Runtime Programmable and Memory Bandwidth Optimized FPGA-Based Coprocessor for Deep Convolutional Neural Network.
IEEE Trans Neural Netw Learn Syst. 2018 Dec;29(12):5922-5934. doi: 10.1109/TNNLS.2018.2815085. Epub 2018 Apr 9.
9
High-performance reconfigurable hardware architecture for restricted Boltzmann machines.
IEEE Trans Neural Netw. 2010 Nov;21(11):1780-92. doi: 10.1109/TNN.2010.2073481. Epub 2010 Sep 20.
10
Event-driven contrastive divergence for spiking neuromorphic systems.
Front Neurosci. 2014 Jan 30;7:272. doi: 10.3389/fnins.2013.00272. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验