Suppr超能文献

用于多种不同高光谱目标表征的多实例学习

Multiple Instance Learning for Multiple Diverse Hyperspectral Target Characterizations.

作者信息

Zhong Ping, Gong Zhiqiang, Shan Jiaxin

出版信息

IEEE Trans Neural Netw Learn Syst. 2020 Jan;31(1):246-258. doi: 10.1109/TNNLS.2019.2900465. Epub 2019 Mar 18.

Abstract

A practical hyperspectral target characterization task estimates a target signature from imprecisely labeled training data. The imprecisions arise from the characteristics of the real-world tasks. First, accurate pixel-level labels on training data are often unavailable. Second, the subpixel targets and occluded targets cause the training samples to contain mixed data and multiple target types. To address these imprecisions, this paper proposes a new hyperspectral target characterization method to produce diverse multiple hyperspectral target signatures under a multiple instance learning (MIL) framework. The proposed method uses only bag-level training samples and labels, which solves the problems arising from the mixed data and lack of pixel-level labels. Moreover, by formulating a multiple characterization MIL and including a diversity-promoting term, the proposed method can learn a set of diverse target signatures, which solves the problems arising from multiple target types in training samples. The experiments on hyperspectral target detections using the learned multiple target signatures over synthetic and real-world data show the effectiveness of the proposed method.

摘要

一个实际的高光谱目标特征描述任务是从不精确标注的训练数据中估计目标特征。这些不精确性源于现实世界任务的特性。首先,训练数据上准确的像素级标签通常不可用。其次,亚像素目标和遮挡目标导致训练样本包含混合数据和多种目标类型。为了解决这些不精确性,本文提出了一种新的高光谱目标特征描述方法,以在多实例学习(MIL)框架下生成多样的多个高光谱目标特征。所提出的方法仅使用包级训练样本和标签,这解决了由混合数据和缺乏像素级标签引起的问题。此外,通过制定多特征MIL并包含一个促进多样性的项,所提出的方法可以学习一组多样的目标特征,这解决了训练样本中多种目标类型引起的问题。使用在合成数据和真实世界数据上学习到的多个目标特征进行的高光谱目标检测实验表明了所提出方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验