Zhu Dehui, Du Bo, Zhang Liangpei
IEEE Trans Neural Netw Learn Syst. 2024 Jul;35(7):10134-10144. doi: 10.1109/TNNLS.2023.3239061. Epub 2024 Jul 8.
Due to the limitation of target size and spatial resolution, targets of interest in hyperspectral images (HSIs) often appear as subpixel targets, which makes hyperspectral target detection still faces an important bottleneck, that is, subpixel target detection. In this article, we propose a new detector by learning single spectral abundance for hyperspectral subpixel target detection (denoted as LSSA). Different from most existing hyperspectral detectors that are designed based on a match of the spectrum assisted by spatial information or focusing on the background, the proposed LSSA addresses the problem of detecting subpixel targets by learning a spectral abundance of the target of interest directly. In LSSA, the abundance of the prior target spectrum is updated and learned, while the prior target spectrum is fixed in a nonnegative matrix factorization (NMF) model. It turns out that such a way is quite effective to learn the abundance of subpixel targets and contributes to detecting subpixel targets in hyperspectral imagery (HSI). Numerous experiments are conducted on one simulated dataset and five real datasets, and the results indicate that the LSSA yields superior performance in hyperspectral subpixel target detection and outperforms its counterparts.
由于目标大小和空间分辨率的限制,高光谱图像(HSIs)中的感兴趣目标通常表现为亚像素目标,这使得高光谱目标检测仍然面临一个重要瓶颈,即亚像素目标检测。在本文中,我们通过学习用于高光谱亚像素目标检测的单光谱丰度提出了一种新的检测器(表示为LSSA)。与大多数现有的基于空间信息辅助的光谱匹配或专注于背景设计的高光谱检测器不同,所提出的LSSA通过直接学习感兴趣目标的光谱丰度来解决检测亚像素目标的问题。在LSSA中,先验目标光谱的丰度被更新和学习,而先验目标光谱在非负矩阵分解(NMF)模型中是固定的。事实证明,这种方法对于学习亚像素目标的丰度非常有效,并有助于在高光谱图像(HSI)中检测亚像素目标。在一个模拟数据集和五个真实数据集上进行了大量实验,结果表明LSSA在高光谱亚像素目标检测中产生了卓越的性能,并且优于同类方法。