Zhu Xiubin, Pedrycz Witold, Li Zhiwu
IEEE Trans Cybern. 2021 Mar;51(3):1639-1650. doi: 10.1109/TCYB.2019.2899633. Epub 2021 Feb 17.
In this paper, we elaborate on a new design approach to the development and analysis of granular input spaces and ensuing granular modeling. Given a numeric model (no matter what specific design methodology has been used to construct it and what architecture has been adopted), we form a granular input space through allocating a certain level of information granularity across the input variables. The formation of granular input space helps us gain a better insight into the ranking of input variables with respect to their precision (the variables with a lower level of information granularity need to be specified in a precise way when estimating the inputs). As a consequence, for granular inputs, the outputs of the granular model are also information granules (say, intervals, fuzzy sets, rough sets, etc.). It is shown that the process of forming granular input space can be sought as an optimization of allocation of information granularity across the input variables so that the specificity of the corresponding granular outputs of the granular model becomes the highest while coverage of data becomes maximized. The construction of granular input space dwells upon two fundamental principles of granular computing-the principle of justifiable granularity and the optimal allocation of information granularity. The quality of the granular input space is quantified in terms of the two conflicting criteria, that is, the specificity of the results produced by the granular model and the coverage of experimental data delivered by this model. In the ensuing optimization problem, one maximizes a product of specificity and coverage. Differential evolution is engaged in this optimization task. The experimental studies involve both synthetic dataset and data coming from the machine learning repository.
在本文中,我们详细阐述了一种用于开发和分析粒度输入空间以及后续粒度建模的新设计方法。给定一个数值模型(无论构建它时使用了何种具体设计方法以及采用了何种架构),我们通过在输入变量之间分配一定水平的信息粒度来形成一个粒度输入空间。粒度输入空间的形成有助于我们更好地洞察输入变量在精度方面的排序(在估计输入时,信息粒度较低的变量需要以精确的方式指定)。因此,对于粒度输入,粒度模型的输出也是信息粒度(例如,区间、模糊集、粗糙集等)。结果表明,形成粒度输入空间的过程可以被视为对输入变量之间信息粒度分配的一种优化,从而使粒度模型相应粒度输出的特异性达到最高,同时数据覆盖范围最大化。粒度输入空间的构建基于粒度计算的两个基本原则——合理粒度原则和信息粒度的最优分配。粒度输入空间的质量根据两个相互冲突的标准进行量化,即粒度模型产生的结果的特异性以及该模型提供的实验数据的覆盖范围。在随后的优化问题中,目标是最大化特异性和覆盖范围的乘积。此优化任务采用差分进化算法。实验研究涉及合成数据集和来自机器学习库的数据。