Department of Ophthalmology and Visual Sciences, University of Michigan , Ann Arbor, Michigan.
Department of Molecular and Integrative Physiology, University of Michigan , Ann Arbor, Michigan.
Am J Physiol Cell Physiol. 2019 Jun 1;316(6):C792-C804. doi: 10.1152/ajpcell.00010.2019. Epub 2019 Mar 20.
Our recent electrophysiological analysis of mouse retinal pigment epithelial (RPE) cells revealed that in the presence of 10 mM external thiocyanate (SCN), voltage steps generated large transient currents whose time-dependent decay most likely results from the accumulation or depletion of SCN intracellularly. In the present study, we investigated the effects of more physiologically relevant concentrations of this biologically active anion. In whole cell recordings of C57BL/6J mouse RPE cells, we found that, over the range of 50 to 500 µM SCN, the amplitude of transient currents evoked by voltage steps was proportional to the extracellular SCN concentration. Transient currents were also produced in RPE cells when the membrane potential was held constant and the external SCN concentration was rapidly increased by pressure-ejecting 500 µM SCN from a second pipette. Other results indicate that the time dependence of currents produced by both approaches results from a change in driving force due to intracellular SCN accumulation or depletion. Finally, by applying fluorescence imaging and voltage-clamping techniques to BALB/c mouse RPE cells loaded with the anion-sensitive dye MQAE, we demonstrated that in the presence of 200 or 500 µM extracellular SCN, depolarizing voltage steps increased the cytoplasmic SCN concentration to an elevated steady state within several seconds. Collectively, these results indicate that, in the presence of physiological concentrations of SCN outside the RPE, the conductance and permeability of the RPE cell membranes for SCN are sufficiently large that SCN rapidly approaches electrochemical equilibrium within the cytoplasm when the membrane voltage or external SCN concentration is perturbed.
我们最近对小鼠视网膜色素上皮(RPE)细胞的电生理分析表明,在存在 10mM 外源性硫氰酸盐(SCN)的情况下,电压阶跃会产生大的瞬态电流,其时间依赖性衰减很可能是由于 SCN 在细胞内的积累或耗竭。在本研究中,我们研究了这种具有生物活性的阴离子更生理相关浓度的影响。在 C57BL/6J 小鼠 RPE 细胞的全细胞膜片钳记录中,我们发现,在 50 到 500µM SCN 的范围内,由电压阶跃引起的瞬态电流的幅度与细胞外 SCN 浓度成正比。当膜电位保持恒定并且通过从第二根吸管快速喷出 500µM SCN 来快速增加细胞外 SCN 浓度时,RPE 细胞中也会产生瞬态电流。其他结果表明,这两种方法产生的电流的时间依赖性是由于细胞内 SCN 积累或耗竭引起的驱动力变化所致。最后,通过将荧光成像和电压钳技术应用于加载阴离子敏感染料 MQAE 的 BALB/c 小鼠 RPE 细胞,我们证明,在存在 200 或 500µM 细胞外 SCN 的情况下,去极化电压阶跃会在几秒钟内将细胞质 SCN 浓度增加到升高的稳态。总之,这些结果表明,在 RPE 外部存在生理浓度的 SCN 的情况下,RPE 细胞膜对 SCN 的电导和通透性足够大,以至于当膜电压或外部 SCN 浓度受到干扰时,SCN 会迅速在细胞质内达到电化学平衡。