Suppr超能文献

预测严重微生物角膜炎中真菌和细菌感染的鉴别因素和预测模型。

Predicting factors and prediction model for discriminating between fungal infection and bacterial infection in severe microbial keratitis.

机构信息

Department of Ophthalmology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.

Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.

出版信息

PLoS One. 2019 Mar 20;14(3):e0214076. doi: 10.1371/journal.pone.0214076. eCollection 2019.

Abstract

A retrospective medical record review including 344 patients who were admitted with severe microbial keratitis at Ramathibodi Hospital, Bangkok, Thailand, from January 2010 to December 2016 was conducted. Causative organisms were identified in 136 patients based on positive culture results, pathological reports and confocal microscopy findings. Eighty-six eyes (63.24%) were bacterial keratitis, while 50 eyes (36.76%) were fungal keratitis. Demographics, clinical history, and clinical findings from slit-lamp examinations were collected. We found statistically significant differences between fungal and bacterial infections in terms of age, occupation, contact lens use, underlying ocular surface diseases, previous ocular surgery, referral status, and duration since onset (p < 0.05). For clinical features, depth of lesions, feathery edge, satellite lesions and presence of endothelial plaque were significantly higher in fungal infection compared to bacterial infection with odds ratios of 2.97 (95%CI 1.43-6.15), 3.92 (95%CI 1.62-9.45), 6.27 (95%CI 2.26-17.41) and 8.00 (95%CI 3.45-18.59), respectively. After multivariate analysis of all factors, there were 7 factors including occupation, history of trauma, duration since onset, depth of lesion, satellite lesions, endothelial plaque and stromal melting that showed statistical significance at p < 0.05. We constructed the prediction model based on these 7 identified factors. The model demonstrated a favorable receiver operating characteristic curve (ROC = 0.79, 95%CI 0.72-0.86) with correct classification, sensitivity and specificity of 81.48%, 70% and 88.24%, respectively at the optimal cut-off point. In conclusion, we propose potential prediction factors and prediction model as an adjunctive tool for clinicians to rapidly differentiate fungal infection from bacterial infection in severe microbial keratitis patients.

摘要

对 2010 年 1 月至 2016 年 12 月在泰国曼谷 Rama-thibodi 医院因严重微生物性角膜炎入院的 344 例患者的病历进行了回顾性医学记录回顾。根据阳性培养结果、病理报告和共聚焦显微镜检查结果,确定了 136 例患者的病原体。86 只眼(63.24%)为细菌性角膜炎,50 只眼(36.76%)为真菌性角膜炎。收集了人口统计学、临床病史和裂隙灯检查的临床发现。我们发现真菌和细菌感染在年龄、职业、隐形眼镜使用、潜在的眼表面疾病、以前的眼部手术、转诊状态和发病后时间(p < 0.05)方面存在统计学显著差异。对于临床特征,病变深度、羽毛状边缘、卫星病变和内皮斑块的存在在真菌感染中明显高于细菌感染,优势比分别为 2.97(95%CI 1.43-6.15)、3.92(95%CI 1.62-9.45)、6.27(95%CI 2.26-17.41)和 8.00(95%CI 3.45-18.59)。对所有因素进行多变量分析后,有 7 个因素包括职业、创伤史、发病后时间、病变深度、卫星病变、内皮斑块和基质融化在 p < 0.05 时有统计学意义。我们基于这 7 个确定的因素构建了预测模型。该模型显示了良好的受试者工作特征曲线(ROC = 0.79,95%CI 0.72-0.86),在最佳截断点时,正确分类、敏感性和特异性分别为 81.48%、70%和 88.24%。总之,我们提出了潜在的预测因素和预测模型,作为临床医生快速区分严重微生物性角膜炎患者中真菌和细菌感染的辅助工具。

相似文献

2
Infectious Keratitis: Microbiological Review of 297 Cases.感染性角膜炎:297例病例的微生物学综述
Jpn J Infect Dis. 2019 Mar 25;72(2):121-123. doi: 10.7883/yoken.JJID.2018.269. Epub 2018 Oct 31.
4
Spectrum of fungal keratitis in north China.中国北方真菌性角膜炎的谱系
Ophthalmology. 2006 Nov;113(11):1943-8. doi: 10.1016/j.ophtha.2006.05.035. Epub 2006 Aug 28.

引用本文的文献

本文引用的文献

8
Prevalence and causes of corneal blindness.角膜盲的患病率及病因
Clin Exp Ophthalmol. 2014 Apr;42(3):249-53. doi: 10.1111/ceo.12164. Epub 2013 Aug 4.
10
Profile of sight-threatening infectious keratitis: a prospective study.威胁视力的感染性角膜炎特征:一项前瞻性研究。
Acta Ophthalmol. 2013 Nov;91(7):643-51. doi: 10.1111/j.1755-3768.2012.02489.x. Epub 2012 Aug 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验