State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300353, China.
College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300353, China.
Plant J. 2019 Jul;99(2):257-269. doi: 10.1111/tpj.14321. Epub 2019 Apr 22.
Glycosylation is a key modification for most molecules including plant natural products, for example, flavonoids and isoflavonoids, and can enhance the bioactivity and bioavailability of the natural products. The crystal structure of plant rhamnosyltransferase UGT89C1 from Arabidopsis thaliana was determined, and the structures of UGT89C1 in complexes with UDP-β-l-rhamnose and acceptor quercetin revealed the detailed interactions between the enzyme and its substrates. Structural and mutational analysis indicated that Asp356, His357, Pro147 and Ile148 are key residues for sugar donor recognition and specificity for UDP-β-l-rhamnose. The mutant H357Q exhibited activity with both UDP-β-l-rhamnose and UDP-glucose. Structural comparison and mutagenesis confirmed that His21 is a key residue as the catalytic base and the only catalytic residue involved in catalysis independently as UGT89C1 lacks the other catalytic Asp that is highly conserved in other reported UGTs and forms a hydrogen bond with the catalytic base His. Ser124 is located in the corresponding position of the catalytic Asp in other UGTs and is not able to form a hydrogen bond with His21. Mutagenesis further showed that Ser124 may not be important in its catalysis, suggesting that His21 and acceptor may form an acceptor-His dyad and UGT89C1 utilizes a catalytic dyad in catalysis instead of catalytic triad. The information of structure and mutagenesis provides structural insights into rhamnosyltransferase substrate specificity and rhamnosylation mechanism.
糖基化是包括植物天然产物在内的大多数分子的关键修饰方式,例如类黄酮和异黄酮,可提高天然产物的生物活性和生物利用度。本研究解析了拟南芥 rhamnosyltransferase UGT89C1 的晶体结构,并解析了与 UDP-β-l-rhamnose 和受体 quercetin 结合的 UGT89C1 复合物的结构,揭示了酶与其底物之间的详细相互作用。结构和突变分析表明,Asp356、His357、Pro147 和 Ile148 是识别糖供体和 UDP-β-l-rhamnose 特异性的关键残基。突变体 H357Q 对 UDP-β-l-rhamnose 和 UDP-glucose 均具有活性。结构比较和突变证实 His21 是作为催化碱的关键残基,也是唯一独立参与催化的催化残基,因为 UGT89C1 缺乏其他在报道的 UGT 中高度保守并与催化碱 His 形成氢键的催化 Asp。Ser124 位于其他 UGT 中催化 Asp 的相应位置,不能与 His21 形成氢键。突变进一步表明,Ser124 在其催化中可能不重要,表明 His21 和受体可能形成受体-His 二联体,UGT89C1 在催化中利用催化二联体而不是催化三联体。结构和突变的信息为 rhamnosyltransferase 底物特异性和 rhamnosylation 机制提供了结构见解。