Oka Takuji, Nemoto Tadashi, Jigami Yoshifumi
Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan.
J Biol Chem. 2007 Feb 23;282(8):5389-403. doi: 10.1074/jbc.M610196200. Epub 2006 Dec 26.
UDP-L-rhamnose is required for the biosynthesis of cell wall rhamnogalacturonan-I, rhamnogalacturonan-II, and natural compounds in plants. It has been suggested that the RHM2/MUM4 gene is involved in conversion of UDP-D-glucose to UDP-L-rhamnose on the basis of its effect on rhamnogalacturonan-I-directed development in Arabidopsis thaliana. RHM2/MUM4-related genes, RHM1 and RHM3, can be found in the A. thaliana genome. Here we present direct evidence that all three RHM proteins have UDP-D-glucose 4,6-dehydratase, UDP-4-keto-6-deoxy-D-glucose 3,5-epimerase, and UDP-4-keto-L-rhamnose 4-keto-reductase activities in the cytoplasm when expressed in the yeast Saccharomyces cerevisiae. Functional domain analysis revealed that the N-terminal region of RHM2 (RHM2-N; amino acids 1-370) has the first activity and the C-terminal region of RHM2 (RHM2-C; amino acids 371-667) has the two following activities. This suggests that RHM2 converts UDP-d-glucose to UDP-L-rhamnose via an UDP-4-keto-6-deoxy-D-glucose intermediate. Site-directed mutagenesis of RHM2 revealed that mucilage defects in MUM4-1 and MUM4-2 mutant seeds of A. thaliana are caused by abolishment of RHM2 enzymatic activity in the mutant strains and furthermore, that the GXXGXX(G/A) and YXXXK motifs are important for enzymatic activity. Moreover, a kinetic analysis of purified His(6)-tagged RHM2-N protein revealed 5.9-fold higher affinity of RHM2 for UDP-D-glucose than for dTDP-D-glucose, the preferred substrate for dTDP-D-glucose 4,6-dehydratase from bacteria. RHM2-N activity is strongly inhibited by UDP-L-rhamnose, UDP-D-xylose, and UDP but not by other sugar nucleotides, suggesting that RHM2 maintains cytoplasmic levels of UDP-D-glucose and UDP-L-rhamnose via feedback inhibition by UDP-L-rhamnose and UDP-D-xylose.
UDP-L-鼠李糖是植物细胞壁鼠李半乳糖醛酸聚糖-I、鼠李半乳糖醛酸聚糖-II和天然化合物生物合成所必需的。基于其对拟南芥中鼠李半乳糖醛酸聚糖-I定向发育的影响,有人提出RHM2/MUM4基因参与UDP-D-葡萄糖向UDP-L-鼠李糖的转化。在拟南芥基因组中可以找到与RHM2/MUM4相关的基因RHM1和RHM3。在此,我们提供直接证据表明,当在酿酒酵母中表达时,所有三种RHM蛋白在细胞质中均具有UDP-D-葡萄糖4,6-脱水酶、UDP-4-酮基-6-脱氧-D-葡萄糖3,5-表异构酶和UDP-4-酮基-L-鼠李糖4-酮基还原酶活性。功能域分析表明,RHM蛋白2的N端区域(RHM2-N;氨基酸1-370)具有第一种活性,而RHM2的C端区域(RHM2-C;氨基酸371-667)具有随后的两种活性。这表明RHM2通过UDP-4-酮基-6-脱氧-D-葡萄糖中间体将UDP-D-葡萄糖转化为UDP-L-鼠李糖。对RHM2进行定点诱变表明,拟南芥MUM4-1和MUM4-2突变体种子中的黏液缺陷是由突变菌株中RHM2酶活性的丧失引起的,此外,GXXGXX(G/A)和YXXXK基序对酶活性很重要。此外,对纯化的His(6)标签RHM2-N蛋白的动力学分析表明,RHM2对UDP-D-葡萄糖的亲和力比对dTDP-D-葡萄糖(细菌中dTDP-D-葡萄糖4,6-脱水酶首选底物)的亲和力高5.9倍。RHM2-N活性受到UDP-L-鼠李糖、UDP-D-木糖和UDP的强烈抑制,但不受其他糖核苷酸的抑制,这表明RHM通过UDP-L-鼠李糖和UDP-D-木糖的反馈抑制来维持细胞质中UDP-D-葡萄糖和UDP-L-鼠李糖的水平。