Suppr超能文献

线粒体丙酮酸脱氢酶有助于生长素调节的器官发育。

Mitochondrial Pyruvate Dehydrogenase Contributes to Auxin-Regulated Organ Development.

机构信息

College of Life Sciences, Fujian Agriculture and Forestry University, No.15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China.

FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No.15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China.

出版信息

Plant Physiol. 2019 Jun;180(2):896-909. doi: 10.1104/pp.18.01460. Epub 2019 Mar 20.

Abstract

Pyruvate dehydrogenase is the first enzyme (E1) of the PDH complex (PDC). This multienzyme complex contains E1, E2, and E3 components and controls the entry of carbon into the mitochondrial tricarboxylic acid cycle to enable cellular energy production. The E1 component of the PDC is composed of an E1α catalytic subunit and an E1β regulatory subunit. In Arabidopsis (), there are two mitochondrial E1α homologs encoded by () and (), and one mitochondrial E1β homolog. Although IAR4 was reported to be involved in auxin conjugate sensitivity and auxin homeostasis in root development, its precise role remains unknown. Here, we provide experimental evidence that mitochondrial PDC E1 contributes to polar auxin transport during organ development. We performed genetic screens for factors involved in cotyledon development and identified an uncharacterized mutant, (). encodes a mitochondrial PDC E1β subunit that can form both a homodimer and a heterodimer with IAR4. The mutation impaired MAB1 homodimerization, reduced the abundance of IAR4 and IAR4L, weakened PDC enzymatic activity, and diminished mitochondrial respiration. A metabolomics analysis showed significant changes in metabolites including amino acids in and, in particular, identified an accumulation of Ala. These results suggest that MAB1 is a component of the Arabidopsis mitochondrial PDC E1. Furthermore, in mutants and seedlings where the TCA cycle was pharmacologically blocked, we found reduced abundance of the PIN-FORMED (PIN) auxin efflux carriers, possibly due to impaired PIN recycling and enhanced PIN degradation in vacuoles. Therefore, we suggest that induces defective polar auxin transport via metabolic abnormalities.

摘要

丙酮酸脱氢酶是 PDH 复合物(PDC)的第一个酶(E1)。该多酶复合物包含 E1、E2 和 E3 成分,控制碳进入线粒体三羧酸循环,从而为细胞提供能量。PDC 的 E1 成分由 E1α催化亚基和 E1β调节亚基组成。在拟南芥()中,有两个由()和()编码的线粒体 E1α同源物,以及一个线粒体 E1β同源物。虽然 IAR4 被报道参与根发育中的生长素轭合物敏感性和生长素稳态,但它的确切作用仍不清楚。在这里,我们提供了实验证据,证明线粒体 PDC E1 有助于器官发育过程中的极性生长素运输。我们进行了参与子叶发育的因素的遗传筛选,并鉴定出一个未被表征的突变体,()。编码线粒体 PDC E1β亚基,它可以形成与 IAR4 的同二聚体和异二聚体。突变体破坏了 MAB1 同二聚体化,降低了 IAR4 和 IAR4L 的丰度,削弱了 PDC 酶活性,并减少了线粒体呼吸。代谢组学分析显示包括氨基酸在内的代谢物发生了显著变化,特别是鉴定出 Ala 的积累。这些结果表明 MAB1 是拟南芥线粒体 PDC E1 的一个组成部分。此外,在 MAB1 突变体和 TCA 循环被药理学阻断的幼苗中,我们发现 PIN 型生长素外排载体的丰度降低,可能是由于 PIN 回收受损和液泡中 PIN 降解增强所致。因此,我们认为通过代谢异常,MAB1 诱导了缺陷型极性生长素运输。

相似文献

6
Alterations in auxin homeostasis suppress defects in cell wall function.生长素稳态的改变抑制细胞壁功能缺陷。
PLoS One. 2014 May 23;9(5):e98193. doi: 10.1371/journal.pone.0098193. eCollection 2014.
10
NO VEIN facilitates auxin-mediated development in Arabidopsis.NO VEIN 促进拟南芥中生长素介导的发育。
Plant Signal Behav. 2010 Oct;5(10):1249-51. doi: 10.4161/psb.5.10.12948. Epub 2010 Oct 1.

引用本文的文献

本文引用的文献

4
Activity assay for plant mitochondrial enzymes.植物线粒体酶活性测定
Methods Mol Biol. 2015;1305:139-49. doi: 10.1007/978-1-4939-2639-8_10.
6
Multiplex micro-respiratory measurements of Arabidopsis tissues.拟南芥组织的多重微呼吸测量。
New Phytol. 2013 Nov;200(3):922-932. doi: 10.1111/nph.12394. Epub 2013 Jul 8.
9
3-Bromopyruvate: targets and outcomes.3-溴丙酮酸:靶点和结果。
J Bioenerg Biomembr. 2012 Feb;44(1):7-15. doi: 10.1007/s10863-012-9419-2.
10
The main auxin biosynthesis pathway in Arabidopsis.拟南芥中主要的生长素生物合成途径。
Proc Natl Acad Sci U S A. 2011 Nov 8;108(45):18512-7. doi: 10.1073/pnas.1108434108. Epub 2011 Oct 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验