Suppr超能文献

胶原网络中的强三轴耦合和异常泊松效应。

Strong triaxial coupling and anomalous Poisson effect in collagen networks.

机构信息

Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104.

Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104.

出版信息

Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6790-6799. doi: 10.1073/pnas.1815659116. Epub 2019 Mar 20.

Abstract

While cells within tissues generate and sense 3D states of strain, the current understanding of the mechanics of fibrous extracellular matrices (ECMs) stems mainly from uniaxial, biaxial, and shear tests. Here, we demonstrate that the multiaxial deformations of fiber networks in 3D cannot be inferred solely based on these tests. The interdependence of the three principal strains gives rise to anomalous ratios of biaxial to uniaxial stiffness between 8 and 9 and apparent Poisson's ratios larger than 1. These observations are explained using a microstructural network model and a coarse-grained constitutive framework that predicts the network Poisson effect and stress-strain responses in uniaxial, biaxial, and triaxial modes of deformation as a function of the microstructural properties of the network, including fiber mechanics and pore size of the network. Using this theoretical approach, we found that accounting for the Poisson effect leads to a 100-fold increase in the perceived elastic stiffness of thin collagen samples in extension tests, reconciling the seemingly disparate measurements of the stiffness of collagen networks using different methods. We applied our framework to study the formation of fiber tracts induced by cellular forces. In vitro experiments with low-density networks showed that the anomalous Poisson effect facilitates higher densification of fibrous tracts, associated with the invasion of cancerous acinar cells. The approach developed here can be used to model the evolving mechanics of ECM during cancer invasion and fibrosis.

摘要

尽管组织内的细胞会产生并感知 3D 应变状态,但目前对纤维细胞外基质(ECM)力学的理解主要源于单轴、双轴和剪切测试。在这里,我们证明了 3D 中纤维网络的多轴变形不能仅基于这些测试来推断。三个主应变的相互依存关系导致双轴与单轴刚度之间的异常比值在 8 到 9 之间,表观泊松比大于 1。这些观察结果可以使用微观结构网络模型和粗粒本构框架来解释,该模型预测了网络泊松效应和在单轴、双轴和三轴变形模式下的应力-应变响应,作为网络微观结构特性的函数,包括纤维力学和网络的孔径。使用这种理论方法,我们发现考虑泊松效应会导致在拉伸测试中,薄胶原蛋白样品的表观弹性刚度增加 100 倍,从而协调了使用不同方法测量胶原蛋白网络的刚度时出现的看似不同的测量值。我们应用该框架研究了细胞力诱导的纤维束形成。在具有低密度网络的体外实验中,异常泊松效应促进了纤维束的更高致密化,这与腺癌细胞的侵袭有关。这里开发的方法可用于模拟癌症侵袭和纤维化过程中 ECM 不断变化的力学特性。

相似文献

1
Strong triaxial coupling and anomalous Poisson effect in collagen networks.胶原网络中的强三轴耦合和异常泊松效应。
Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6790-6799. doi: 10.1073/pnas.1815659116. Epub 2019 Mar 20.

引用本文的文献

4
Unexpected softening of a fibrous matrix by contracting inclusions.收缩内含物导致纤维基质的意外软化。
Acta Biomater. 2024 Mar 15;177:253-264. doi: 10.1016/j.actbio.2024.01.025. Epub 2024 Jan 23.

本文引用的文献

2
The Role of Network Architecture in Collagen Mechanics.网络架构在胶原蛋白力学中的作用。
Biophys J. 2018 Jun 5;114(11):2665-2678. doi: 10.1016/j.bpj.2018.04.043.
5
Engineered Tissue Folding by Mechanical Compaction of the Mesenchyme.工程化组织折叠通过间质的机械压实。
Dev Cell. 2018 Jan 22;44(2):165-178.e6. doi: 10.1016/j.devcel.2017.12.004. Epub 2017 Dec 28.
7
Compressive elasticity of polydisperse biopolymer gels.多分散生物聚合物凝胶的压缩弹性。
Phys Rev E. 2017 May;95(5-1):052415. doi: 10.1103/PhysRevE.95.052415. Epub 2017 May 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验