Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany; Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany.
Biomater Adv. 2024 Oct;163:213961. doi: 10.1016/j.bioadv.2024.213961. Epub 2024 Jul 16.
The mechanical characteristics of the extracellular environment are known to significantly influence cancer cell behavior in vivo and in vitro. The structural complexity and viscoelastic dynamics of the extracellular matrix (ECM) pose significant challenges in understanding its impact on cancer cells. Herein, we report distinct regulatory signatures in the invasion of different breast cancer cell lines into three-dimensional (3D) fibrillar collagen networks, caused by systematic modifications of the physical network properties. By reconstituting collagen networks of thin fibrils, we demonstrate that such networks can display network strand flexibility akin to that of synthetic polymer networks, known to exhibit entropic rubber elasticity. This finding contrasts with the predominant description of the mechanics of fibrillar collagen networks by an enthalpic bending elasticity of rod-like fibrils. Mean-squared displacement analysis of free-standing fibrils confirmed a flexible fiber regime in networks of thin fibrils. Furthermore, collagen fibrils in both networks were softened by the adsorption of highly negatively charged sulfonated polymers and colloidal probe force measurements of network elastic modulus again proofed the occurrence of the two different physical network regimes. Our cell assays revealed that the cellular behavior (morphology, clustering, invasiveness, matrix metalloproteinase (MMP) activity) of the 'weakly invasive' MCF-7 and 'highly invasive' MDA-MB-231 breast cancer cell lines is distinctively affected by the physical (enthalpic/entropic) network regime, and cannot be explained by changes of the network elastic modulus, alone. These results highlight an essential pathway, albeit frequently overlooked, how the physical characteristics of fibrillar ECMs affect cellular behavior. Considering the coexistence of diverse physical network regimes of the ECM in vivo, our findings underscore their critical role of ECM's physical network regimes in tumor progression and other cell functions, and moreover emphasize the significance of 3D in vitro collagen network models for quantifying cell responses in both healthy and pathological states.
细胞外环境的力学特性被认为显著影响体内和体外的癌细胞行为。细胞外基质(ECM)的结构复杂性和粘弹性动力学对理解其对癌细胞的影响提出了重大挑战。在此,我们报告了不同乳腺癌细胞系在三维(3D)纤维状胶原网络中入侵时的明显调节特征,这是由于物理网络特性的系统改变引起的。通过重建细纤维的胶原网络,我们证明这些网络可以表现出类似于表现出熵弹性橡胶的合成聚合物网络的网络链灵活性。这一发现与纤维状胶原网络力学的主要描述形成对比,即棒状纤维的热焓弯曲弹性。独立纤维的均方根位移分析证实了在细纤维网络中存在柔性纤维状态。此外,两种网络中的胶原纤维都被高度带负电荷的磺化聚合物吸附所软化,并且网络弹性模量的胶体探针力测量再次证明了两种不同的物理网络状态的发生。我们的细胞测定表明,“弱侵袭性” MCF-7 和“高侵袭性” MDA-MB-231 乳腺癌细胞系的细胞行为(形态、聚集、侵袭性、基质金属蛋白酶(MMP)活性)明显受到物理(热焓/熵)网络状态的影响,并且不能仅通过网络弹性模量的变化来解释。这些结果突出了一个基本途径,尽管经常被忽视,即纤维 ECM 的物理特性如何影响细胞行为。考虑到体内 ECM 的多种物理网络状态的共存,我们的发现强调了 ECM 的物理网络状态在肿瘤进展和其他细胞功能中的关键作用,并且还强调了 3D 体外胶原网络模型在量化健康和病理状态下细胞反应的重要性。