Hall Matthew S, Alisafaei Farid, Ban Ehsan, Feng Xinzeng, Hui Chung-Yuen, Shenoy Vivek B, Wu Mingming
Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853.
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104.
Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):14043-14048. doi: 10.1073/pnas.1613058113. Epub 2016 Nov 21.
In native states, animal cells of many types are supported by a fibrous network that forms the main structural component of the ECM. Mechanical interactions between cells and the 3D ECM critically regulate cell function, including growth and migration. However, the physical mechanism that governs the cell interaction with fibrous 3D ECM is still not known. In this article, we present single-cell traction force measurements using breast tumor cells embedded within 3D collagen matrices. We recreate the breast tumor mechanical environment by controlling the microstructure and density of type I collagen matrices. Our results reveal a positive mechanical feedback loop: cells pulling on collagen locally align and stiffen the matrix, and stiffer matrices, in return, promote greater cell force generation and a stiffer cell body. Furthermore, cell force transmission distance increases with the degree of strain-induced fiber alignment and stiffening of the collagen matrices. These findings highlight the importance of the nonlinear elasticity of fibrous matrices in regulating cell-ECM interactions within a 3D context, and the cell force regulation principle that we uncover may contribute to the rapid mechanical tissue stiffening occurring in many diseases, including cancer and fibrosis.
在天然状态下,多种类型的动物细胞由构成细胞外基质(ECM)主要结构成分的纤维网络所支撑。细胞与三维ECM之间的机械相互作用对细胞功能(包括生长和迁移)起着关键的调节作用。然而,控制细胞与纤维状三维ECM相互作用的物理机制仍不清楚。在本文中,我们展示了使用嵌入三维胶原基质中的乳腺肿瘤细胞进行的单细胞牵引力测量。我们通过控制I型胶原基质的微观结构和密度来重现乳腺肿瘤的力学环境。我们的结果揭示了一个正向的机械反馈回路:细胞对胶原的局部牵拉会使基质排列并变硬,而更硬的基质反过来又会促进细胞产生更大的力并使细胞体更硬。此外,细胞力的传递距离随着应变诱导的纤维排列程度和胶原基质的变硬而增加。这些发现突出了纤维基质的非线性弹性在调节三维环境中细胞与ECM相互作用方面的重要性,而我们所揭示的细胞力调节原理可能有助于解释包括癌症和纤维化在内的许多疾病中发生的快速机械性组织硬化现象。