基于深度学习辅助的人脸跟踪检测突发听觉刺激对面部温度变化的影响。

Detecting changes in facial temperature induced by a sudden auditory stimulus based on deep learning-assisted face tracking.

机构信息

QIMR Berghofer Medical Research Institute, Brisbane, Australia.

School of Medicine, The University of Queensland, Brisbane, Australia.

出版信息

Sci Rep. 2019 Mar 18;9(1):4729. doi: 10.1038/s41598-019-41172-7.

Abstract

Thermal Imaging (Infrared-Imaging-IRI) is a promising new technique for psychophysiological research and application. Unlike traditional physiological measures (like skin conductance and heart rate), it is uniquely contact-free, substantially enhancing its ecological validity. Investigating facial regions and subsequent reliable signal extraction from IRI data is challenging due to head motion artefacts. Exploiting its potential thus depends on advances in analytical methods. Here, we developed a novel semi-automated thermal signal extraction method employing deep learning algorithms for facial landmark identification. We applied this method to physiological responses elicited by a sudden auditory stimulus, to determine if facial temperature changes induced by a stimulus of a loud sound can be detected. We compared thermal responses with psycho-physiological sensor-based tools of galvanic skin response (GSR) and electrocardiography (ECG). We found that the temperatures of selected facial regions, particularly the nose tip, significantly decreased after the auditory stimulus. Additionally, this response was quite rapid at around 4-5 seconds, starting less than 2 seconds following the GSR changes. These results demonstrate that our methodology offers a sensitive and robust tool to capture facial physiological changes with minimal manual intervention and manual pre-processing of signals. Newer methodological developments for reliable temperature extraction promise to boost IRI use as an ecologically-valid technique in social and affective neuroscience.

摘要

热成像(红外成像-IRI)是一种有前途的新的心理生理学研究和应用技术。与传统的生理测量方法(如皮肤电导和心率)不同,它是独特的非接触式的,大大提高了其生态有效性。由于头部运动伪影,研究面部区域和随后从 IRI 数据中可靠地提取信号具有挑战性。因此,开发新的分析方法对于开发其潜力至关重要。在这里,我们开发了一种新的基于深度学习算法的半自动热信号提取方法,用于面部特征点识别。我们将该方法应用于由突然的听觉刺激引起的生理反应,以确定是否可以检测到由大声刺激引起的面部温度变化。我们将热响应与基于皮肤电反应(GSR)和心电图(ECG)的心理生理传感器工具进行了比较。我们发现,选定面部区域(特别是鼻尖)的温度在听觉刺激后明显下降。此外,这种反应非常迅速,大约在 4-5 秒内,在 GSR 变化后不到 2 秒就开始了。这些结果表明,我们的方法提供了一种敏感且强大的工具,可以在最小的人工干预和手动预处理信号的情况下捕捉面部生理变化。用于可靠温度提取的新方法学发展有望推动 IRI 作为一种生态有效性技术在社会和情感神经科学中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd3a/6426955/0f9fd72a0085/41598_2019_41172_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索