文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用热成像进行非接触式应激分类。

Towards a Contactless Stress Classification Using Thermal Imaging.

机构信息

Dipartimento di Ingegneria dell'Informazione, University of Pisa, 56122 Pisa, Italy.

Research Center "E. Piaggio", University of Pisa, 56122 Pisa, Italy.

出版信息

Sensors (Basel). 2022 Jan 27;22(3):976. doi: 10.3390/s22030976.


DOI:10.3390/s22030976
PMID:35161722
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8839779/
Abstract

Thermal cameras capture the infrared radiation emitted from a body in a contactless manner and can provide an indirect estimation of the autonomic nervous system (ANS) dynamics through the regulation of the skin temperature. This study investigates the contribution given by thermal imaging for an effective automatic stress detection with the perspective of a contactless stress recognition system. To this aim, we recorded both ANS correlates (cardiac, electrodermal, and respiratory activity) and thermal images from 25 volunteers under acute stress induced by the Stroop test. We conducted a statistical analysis on the features extracted from each signal, and we implemented subject-independent classifications based on the support vector machine model with an embedded recursive feature elimination algorithm. Particularly, we trained three classifiers using different feature sets: the full set of features, only those derived from the peripheral autonomic correlates, and only those derived from the thermal images. Classification accuracy and feature selection results confirmed the relevant contribution provided by the thermal features in the acute stress detection task. Indeed, a combination of ANS correlates and thermal features achieved 97.37% of accuracy. Moreover, using only thermal features we could still successfully detect stress with an accuracy of 86.84% in a contact-free manner.

摘要

热像仪以非接触的方式捕捉人体发出的红外辐射,并可以通过调节皮肤温度来提供自主神经系统 (ANS) 动态的间接估计。本研究通过接触式应激识别系统的角度,探讨了热成像在有效自动应激检测中的作用。为此,我们记录了 25 名志愿者在斯特鲁普测试诱发的急性应激下的 ANS 相关指标(心率变异性、皮肤电反应和呼吸活动)和热像图。我们对每个信号提取的特征进行了统计分析,并基于支持向量机模型和嵌入式递归特征消除算法实现了基于个体的分类。具体来说,我们使用不同的特征集训练了三个分类器:完整的特征集、仅来自外周自主相关的特征集,以及仅来自热像图的特征集。分类准确性和特征选择结果证实了热特征在急性应激检测任务中的重要贡献。事实上,将自主神经相关指标和热特征相结合,可以达到 97.37%的准确率。此外,仅使用热特征,我们仍然可以以非接触的方式成功地以 86.84%的准确率检测到应激。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f89/8839779/e9fbb1643856/sensors-22-00976-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f89/8839779/9bc9c3458904/sensors-22-00976-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f89/8839779/52ed05f529d3/sensors-22-00976-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f89/8839779/62a36431cd24/sensors-22-00976-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f89/8839779/715274445b0f/sensors-22-00976-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f89/8839779/ace6157377e9/sensors-22-00976-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f89/8839779/eb7a7501b44b/sensors-22-00976-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f89/8839779/dd1fdc3734e7/sensors-22-00976-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f89/8839779/629422a63712/sensors-22-00976-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f89/8839779/e9fbb1643856/sensors-22-00976-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f89/8839779/9bc9c3458904/sensors-22-00976-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f89/8839779/52ed05f529d3/sensors-22-00976-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f89/8839779/62a36431cd24/sensors-22-00976-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f89/8839779/715274445b0f/sensors-22-00976-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f89/8839779/ace6157377e9/sensors-22-00976-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f89/8839779/eb7a7501b44b/sensors-22-00976-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f89/8839779/dd1fdc3734e7/sensors-22-00976-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f89/8839779/629422a63712/sensors-22-00976-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f89/8839779/e9fbb1643856/sensors-22-00976-g009.jpg

相似文献

[1]
Towards a Contactless Stress Classification Using Thermal Imaging.

Sensors (Basel). 2022-1-27

[2]
Computer-assisted lip diagnosis on Traditional Chinese Medicine using multi-class support vector machines.

BMC Complement Altern Med. 2012-8-16

[3]
Detection of major depressive disorder from linear and nonlinear heart rate variability features during mental task protocol.

Comput Biol Med. 2019-8-4

[4]
Entropy analysis of heart rate variability and its application to recognize major depressive disorder: A pilot study.

Technol Health Care. 2019

[5]
Autonomic Regulation of Facial Temperature during Stress: A Cross-Mapping Analysis.

Sensors (Basel). 2023-7-14

[6]
Contactless Vital Signs Measurement System Using RGB-Thermal Image Sensors and Its Clinical Screening Test on Patients with Seasonal Influenza.

Sensors (Basel). 2020-4-13

[7]
Discriminating Stress From Cognitive Load Using Contactless Thermal Imaging Devices.

Annu Int Conf IEEE Eng Med Biol Soc. 2021-11

[8]
Mild Dehydration Identification Using Machine Learning to Assess Autonomic Responses to Cognitive Stress.

Nutrients. 2019-12-23

[9]
Feature selection for elderly faller classification based on wearable sensors.

J Neuroeng Rehabil. 2017-5-30

[10]
Breathing Pattern Monitoring by Using Remote Sensors.

Sensors (Basel). 2022-11-16

引用本文的文献

[1]
Validation of the EmotiBit wearable sensor for heart-based measures under varying workload conditions.

Front Neuroergon. 2025-6-18

[2]
Machine learning-based classification analysis of knowledge worker mental stress.

Front Public Health. 2023

[3]
Classification of User Emotional Experiences on B2C Websites Utilizing Infrared Thermal Imaging.

Sensors (Basel). 2023-9-20

[4]
Capacity of Autonomous Sensory Meridian Response on the Reduction of Mental Stress.

Int J Environ Res Public Health. 2022-11-6

本文引用的文献

[1]
Discriminating Stress From Cognitive Load Using Contactless Thermal Imaging Devices.

Annu Int Conf IEEE Eng Med Biol Soc. 2021-11

[2]
Detecting changes in facial temperature induced by a sudden auditory stimulus based on deep learning-assisted face tracking.

Sci Rep. 2019-3-18

[3]
Emotion analysis in children through facial emissivity of infrared thermal imaging.

PLoS One. 2019-3-20

[4]
Measuring acute stress response through physiological signals: towards a quantitative assessment of stress.

Med Biol Eng Comput. 2018-8-9

[5]
Stress and Heart Rate Variability: A Meta-Analysis and Review of the Literature.

Psychiatry Investig. 2018-3

[6]
Psychological stress level detection based on electrodermal activity.

Behav Brain Res. 2018-4-2

[7]
Electrodermal Activity Sensor for Classification of Calm/Distress Condition.

Sensors (Basel). 2017-10-12

[8]
Thermal signatures of voluntary deception in ecological conditions.

Sci Rep. 2016-10-13

[9]
Power Spectral Density Analysis of Electrodermal Activity for Sympathetic Function Assessment.

Ann Biomed Eng. 2016-10

[10]
Assessment of Mental, Emotional and Physical Stress through Analysis of Physiological Signals Using Smartphones.

Sensors (Basel). 2015-10-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索