Panja Prabir
Department of Applied Science, Haldia Institute of Technology, Purba Midnapore, Haldia, W.B., 721657, India.
Theory Biosci. 2019 Nov;138(2):251-259. doi: 10.1007/s12064-019-00291-5. Epub 2019 Mar 20.
In this paper, a fractional-order predator-prey mathematical model has been developed considering Holling type II functional response. Here, we have investigated the interaction dynamics of prey, middle predator and top predator. We assume that the middle predator consumes only the prey, and the top predator consumes only the middle predator. Here, the logistic growth of prey has been considered. Then, different possible equilibrium points of our proposed system are determined. The stability of our proposed system is investigated around the equilibrium points. Then, some numerical simulations results are presented for better understanding the dynamics of our proposed model. It is found that the fractional-order derivative can improve the stability of our proposed system.
在本文中,考虑到Holling II型功能反应,建立了一个分数阶捕食者 - 猎物数学模型。在此,我们研究了猎物、中级捕食者和顶级捕食者之间的相互作用动态。我们假设中级捕食者仅捕食猎物,顶级捕食者仅捕食中级捕食者。在此,考虑了猎物的逻辑斯谛增长。然后,确定了我们所提出系统的不同可能平衡点。围绕平衡点研究了我们所提出系统的稳定性。接着,给出了一些数值模拟结果,以便更好地理解我们所提出模型的动态。结果发现,分数阶导数可以提高我们所提出系统的稳定性。