Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, Massachusetts, 01609.
J Comput Chem. 2019 Jul 5;40(18):1718-1726. doi: 10.1002/jcc.25826. Epub 2019 Mar 20.
We have developed and tested PKA17, a coarse-grain grid-based model for predicting protein pK shifts. Our pK predictor is currently deployed via a website interface. We have carried out parameter fitting using 442 Asp, Glu, His, Lys, and Arg residues for which experimental results are available in the literature. PROPKA software has been used for benchmarking. The average unsigned error and root-mean-square deviation (RMSD) have been found to be 0.628 and 0.831 pH units, respectively, for PKA17. The corresponding results with PROPKA are 0.761 and 1.063 units. We have assessed the robustness of the developed PKA17 methodology with a number of tests and have also explored the possibility of using a combination of PROPKA and PKA17 calculations in order to improve the accuracy of predicted pK values for protein residues. We have also once again confirmed that protein acidity constants are influenced almost entirely by residues in the immediate spatial proximity of the ionizable amino acids. The resulting PKA17 software has been deployed online with a web-based interface at http://users.wpi.edu/~jpcvitkovic/pka_calc.html. © 2019 Wiley Periodicals, Inc.
我们开发并测试了 PKA17,这是一种用于预测蛋白质 pK 变化的粗粒度网格模型。我们的 pK 预测器目前通过网站界面部署。我们使用了 442 个 Asp、Glu、His、Lys 和 Arg 残基进行了参数拟合,这些残基的实验结果在文献中都有报道。PROPKA 软件被用于基准测试。对于 PKA17,发现平均无符号误差和均方根偏差(RMSD)分别为 0.628 和 0.831 pH 单位。使用 PROPKA 的相应结果分别为 0.761 和 1.063 个单位。我们通过多项测试评估了所开发的 PKA17 方法的稳健性,还探索了在 PROPKA 和 PKA17 计算中组合使用的可能性,以提高蛋白质残基预测 pK 值的准确性。我们还再次证实,蛋白质酸度常数几乎完全受可电离氨基酸附近的残基影响。由此产生的 PKA17 软件已在 http://users.wpi.edu/~jpcvitkovic/pka_calc.html 上部署了一个基于网络的界面。© 2019 威立出版公司