Suppr超能文献

利用表征学习预测蛋白质p

Prediction of protein p with representation learning.

作者信息

Gokcan Hatice, Isayev Olexandr

机构信息

Department of Chemistry, Mellon College of Science, Carnegie Mellon University Pittsburgh PA USA

出版信息

Chem Sci. 2022 Feb 1;13(8):2462-2474. doi: 10.1039/d1sc05610g. eCollection 2022 Feb 23.

Abstract

The behavior of proteins is closely related to the protonation states of the residues. Therefore, prediction and measurement of p are essential to understand the basic functions of proteins. In this work, we develop a new empirical scheme for protein p prediction that is based on deep representation learning. It combines machine learning with atomic environment vector (AEV) and learned quantum mechanical representation from ANI-2x neural network potential (J. Chem. Theory Comput. 2020, 16, 4192). The scheme requires only the coordinate information of a protein as the input and separately estimates the p for all five titratable amino acid types. The accuracy of the approach was analyzed with both cross-validation and an external test set of proteins. Obtained results were compared with the widely used empirical approach PROPKA. The new empirical model provides accuracy with MAEs below 0.5 for all amino acid types. It surpasses the accuracy of PROPKA and performs significantly better than the null model. Our model is also sensitive to the local conformational changes and molecular interactions.

摘要

蛋白质的行为与残基的质子化状态密切相关。因此,预测和测量pKa对于理解蛋白质的基本功能至关重要。在这项工作中,我们基于深度表示学习开发了一种新的蛋白质pKa预测经验方案。它将机器学习与原子环境向量(AEV)以及从ANI-2x神经网络势中学习到的量子力学表示相结合(《化学理论与计算杂志》,2020年,第16卷,第4192页)。该方案仅需蛋白质的坐标信息作为输入,并分别估计所有五种可滴定氨基酸类型的pKa。通过交叉验证和外部蛋白质测试集分析了该方法的准确性。将所得结果与广泛使用的经验方法PROPKA进行了比较。新的经验模型对所有氨基酸类型的平均绝对误差(MAE)均低于0.5,具有较高的准确性。它超过了PROPKA的准确性,并且比空模型表现明显更好。我们的模型对局部构象变化和分子相互作用也很敏感。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd66/8864681/542092c0881e/d1sc05610g-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验