Suppr超能文献

推特上的恶意行为者:公共卫生研究人员指南。

Malicious Actors on Twitter: A Guide for Public Health Researchers.

机构信息

Amelia M. Jamison is with the Center for Health Equity, School of Public Health, University of Maryland, College Park. David A. Broniatowski is with the Department of Engineering Management and Systems Engineering, School of Engineering and Applied Science, George Washington University, Washington, DC. Sandra Crouse Quinn is with the Department of Family Science and the Center for Health Equity, School of Public Health, University of Maryland.

出版信息

Am J Public Health. 2019 May;109(5):688-692. doi: 10.2105/AJPH.2019.304969. Epub 2019 Mar 21.

Abstract

Social bots and other malicious actors have a significant presence on Twitter. It is increasingly clear that some of their activities can have a negative impact on public health. This guide provides an overview of the types of malicious actors currently active on Twitter by highlighting the characteristic behaviors and strategies employed. It covers both automated accounts (including traditional spambots, social spambots, content polluters, and fake followers) and human users (primarily trolls). It also addresses the unique threat of state-sponsored trolls. We utilize examples from our own research on vaccination to illustrate. The diversity of malicious actors and their multifarious goals adds complexity to research efforts that use Twitter. Bots are now part of the social media landscape, and although it may not be possible to stop their influence, it is vital that public health researchers and practitioners recognize the potential harms and develop strategies to address bot- and troll-driven messages.

摘要

社交媒体机器人和其他恶意行为者在 Twitter 上大量存在。越来越明显的是,他们的一些活动可能会对公共健康产生负面影响。本指南通过突出显示当前在 Twitter 上活跃的恶意行为者的特征行为和策略,提供了对这些行为者类型的概述。它涵盖了自动账户(包括传统垃圾邮件机器人、社交垃圾邮件机器人、内容污染者和虚假关注者)和人类用户(主要是喷子)。它还解决了国家支持的喷子的独特威胁。我们利用自己在疫苗接种研究中的例子来说明。恶意行为者的多样性及其多种多样的目标增加了使用 Twitter 进行研究的复杂性。机器人现在已经成为社交媒体景观的一部分,尽管可能无法阻止他们的影响,但公共卫生研究人员和从业者必须认识到潜在的危害,并制定策略来解决由机器人和喷子驱动的信息。

相似文献

1
Malicious Actors on Twitter: A Guide for Public Health Researchers.推特上的恶意行为者:公共卫生研究人员指南。
Am J Public Health. 2019 May;109(5):688-692. doi: 10.2105/AJPH.2019.304969. Epub 2019 Mar 21.
3
The spread of low-credibility content by social bots.社交机器人传播低可信度内容。
Nat Commun. 2018 Nov 20;9(1):4787. doi: 10.1038/s41467-018-06930-7.
7
Social media and flu: Media Twitter accounts as agenda setters.社交媒体与流感:作为议程设置者的媒体推特账号
Int J Med Inform. 2016 Jul;91:67-73. doi: 10.1016/j.ijmedinf.2016.04.009. Epub 2016 Apr 22.

引用本文的文献

2
COVID-19 Tweet Links: A Preliminary Investigation of Type and Relevance.新冠疫情推文链接:类型与相关性的初步调查
Proc Assoc Inf Sci Technol. 2022;59(1):693-695. doi: 10.1002/pra2.693. Epub 2022 Oct 14.
5
Disrupting drive-by download networks on Twitter.破坏推特上的驱动式下载网络。
Soc Netw Anal Min. 2022;12(1):117. doi: 10.1007/s13278-022-00944-2. Epub 2022 Aug 20.

本文引用的文献

5
Could Social Bots Pose a Threat to Public Health?社交机器人会对公众健康构成威胁吗?
Am J Public Health. 2018 Aug;108(8):1005-1006. doi: 10.2105/AJPH.2018.304512.
6
Ethical Issues in Social Media Research for Public Health.社交媒体在公共卫生研究中的伦理问题。
Am J Public Health. 2018 Mar;108(3):343-348. doi: 10.2105/AJPH.2017.304249. Epub 2018 Jan 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验