Suppr超能文献

Botometer 101:面向计算社会科学家的社交机器人实践

Botometer 101: social bot practicum for computational social scientists.

作者信息

Yang Kai-Cheng, Ferrara Emilio, Menczer Filippo

机构信息

Observatory on Social Media, Indiana University Bloomington, Bloomington, IN 47408 USA.

Information Sciences Institute, University of Southern California, Marina del Rey, CA 90292 USA.

出版信息

J Comput Soc Sci. 2022;5(2):1511-1528. doi: 10.1007/s42001-022-00177-5. Epub 2022 Aug 20.

Abstract

Social bots have become an important component of online social media. Deceptive bots, in particular, can manipulate online discussions of important issues ranging from elections to public health, threatening the constructive exchange of information. Their ubiquity makes them an interesting research subject and requires researchers to properly handle them when conducting studies using social media data. Therefore, it is important for researchers to gain access to bot detection tools that are reliable and easy to use. This paper aims to provide an introductory tutorial of Botometer, a public tool for bot detection on Twitter, for readers who are new to this topic and may not be familiar with programming and machine learning. We introduce how Botometer works, the different ways users can access it, and present a case study as a demonstration. Readers can use the case study code as a template for their own research. We also discuss recommended practice for using Botometer.

摘要

社交机器人已成为在线社交媒体的重要组成部分。尤其是欺骗性机器人,它们能够操纵从选举到公共卫生等重要问题的在线讨论,威胁到信息的建设性交流。它们的普遍存在使其成为一个有趣的研究课题,并且要求研究人员在使用社交媒体数据进行研究时妥善处理它们。因此,研究人员能够使用可靠且易于使用的机器人检测工具非常重要。本文旨在为刚接触该主题且可能不熟悉编程和机器学习的读者提供一份关于Botometer的入门教程,Botometer是一个用于在推特上检测机器人的公共工具。我们介绍了Botometer的工作原理、用户可以访问它的不同方式,并展示了一个案例研究作为示范。读者可以将案例研究代码用作自己研究的模板。我们还讨论了使用Botometer的推荐做法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a673/9391657/bd1574cae863/42001_2022_177_Fig1_HTML.jpg

相似文献

1
Botometer 101: social bot practicum for computational social scientists.
J Comput Soc Sci. 2022;5(2):1511-1528. doi: 10.1007/s42001-022-00177-5. Epub 2022 Aug 20.
2
The False positive problem of automatic bot detection in social science research.
PLoS One. 2020 Oct 22;15(10):e0241045. doi: 10.1371/journal.pone.0241045. eCollection 2020.
5
Public Opinion Manipulation on Social Media: Social Network Analysis of Twitter Bots during the COVID-19 Pandemic.
Int J Environ Res Public Health. 2022 Dec 7;19(24):16376. doi: 10.3390/ijerph192416376.
6
An adept approach to ascertain and elude probable social bots attacks on twitter and twitch employing machine learning approach.
MethodsX. 2023 Oct 10;11:102430. doi: 10.1016/j.mex.2023.102430. eCollection 2023 Dec.
7
E-Cigarette Surveillance With Social Media Data: Social Bots, Emerging Topics, and Trends.
JMIR Public Health Surveill. 2017 Dec 20;3(4):e98. doi: 10.2196/publichealth.8641.
8
Social Bots' Role in the COVID-19 Pandemic Discussion on Twitter.
Int J Environ Res Public Health. 2023 Feb 13;20(4):3284. doi: 10.3390/ijerph20043284.
9
Insights into elections: An ensemble bot detection coverage framework applied to the 2018 U.S. midterm elections.
PLoS One. 2021 Jan 6;16(1):e0244309. doi: 10.1371/journal.pone.0244309. eCollection 2021.
10
Not our kind of crowd! How partisan bias distorts perceptions of political bots on Twitter (now X).
Br J Soc Psychol. 2025 Apr;64(2):e12794. doi: 10.1111/bjso.12794. Epub 2024 Aug 29.

引用本文的文献

3
A global comparison of social media bot and human characteristics.
Sci Rep. 2025 Mar 31;15(1):10973. doi: 10.1038/s41598-025-96372-1.
4
Comparing methods for creating a national random sample of twitter users.
Soc Netw Anal Min. 2024;14(1):160. doi: 10.1007/s13278-024-01327-5. Epub 2024 Aug 14.
6
A graph neural architecture search approach for identifying bots in social media.
Front Artif Intell. 2024 Dec 20;7:1509179. doi: 10.3389/frai.2024.1509179. eCollection 2024.
7
Detecting anomalies in graph networks on digital markets.
PLoS One. 2024 Dec 23;19(12):e0315849. doi: 10.1371/journal.pone.0315849. eCollection 2024.
9
Social bots spoil activist sentiment without eroding engagement.
Sci Rep. 2024 Nov 6;14(1):27005. doi: 10.1038/s41598-024-74032-0.

本文引用的文献

1
Neutral bots probe political bias on social media.
Nat Commun. 2021 Sep 22;12(1):5580. doi: 10.1038/s41467-021-25738-6.
2
Social Bots' Sentiment Engagement in Health Emergencies: A Topic-Based Analysis of the COVID-19 Pandemic Discussions on Twitter.
Int J Environ Res Public Health. 2020 Nov 23;17(22):8701. doi: 10.3390/ijerph17228701.
3
Bots and online hate during the COVID-19 pandemic: case studies in the United States and the Philippines.
J Comput Soc Sci. 2020;3(2):445-468. doi: 10.1007/s42001-020-00087-4. Epub 2020 Oct 20.
4
The False positive problem of automatic bot detection in social science research.
PLoS One. 2020 Oct 22;15(10):e0241045. doi: 10.1371/journal.pone.0241045. eCollection 2020.
5
Social scientists battle bots to glean insights from online chatter.
Nature. 2020 Feb;578(7793):17. doi: 10.1038/d41586-020-00141-1.
6
Cannabis Surveillance With Twitter Data: Emerging Topics and Social Bots.
Am J Public Health. 2020 Mar;110(3):357-362. doi: 10.2105/AJPH.2019.305461. Epub 2019 Dec 19.
7
Machine behaviour.
Nature. 2019 Apr;568(7753):477-486. doi: 10.1038/s41586-019-1138-y. Epub 2019 Apr 24.
8
Malicious Actors on Twitter: A Guide for Public Health Researchers.
Am J Public Health. 2019 May;109(5):688-692. doi: 10.2105/AJPH.2019.304969. Epub 2019 Mar 21.
9
Fake news on Twitter during the 2016 U.S. presidential election.
Science. 2019 Jan 25;363(6425):374-378. doi: 10.1126/science.aau2706.
10
Influence of fake news in Twitter during the 2016 US presidential election.
Nat Commun. 2019 Jan 2;10(1):7. doi: 10.1038/s41467-018-07761-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验