Linh Vo Thi Nhat, Xiao Xiaofei, Jung Ho Sang, Giannini Vincenzo, Maier Stefan A, Kim Dong-Ho, Lee Yong-Ill, Park Sung-Gyu
Advanced Nano-Surface Department (ANSD), Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, Korea.
Department of Chemistry, Changwon National University, Changwon, Gyeongnam 51140, Korea.
Nanomaterials (Basel). 2019 Mar 20;9(3):468. doi: 10.3390/nano9030468.
The compact integration of semiconductor TiO₂ nanoparticles (NPs) into the 3D crossed region of stacked plasmonic Ag nanowires (NWs) enhanced the photocatalytic activities through synergistic effects between the strong localized surface plasmon resonance (LSPR) excitation at the 3D cross-points of the Ag NWs and the efficient hot electron transfer at the interface between the Ag NWs and the TiO₂ NPs. This paper explored new hybrid nanostructures based on the selective assembly of TiO₂ NPs onto 3D cross-points of vertically stacked Ag NWs. The assembled TiO₂ NPs directly contacted the 3D Ag NWs; therefore, charge separation occurred efficiently at the interface between the Ag NWs and the TiO₂ NPs. The composite nanomaterials exhibited high extinction across the ultraviolet-visible range, rendering the nanomaterials high-performance photocatalysts across the full (ultraviolet-visible) and the visible spectral regions. Theoretical simulations clearly revealed that the local plasmonic field was highly enhanced at the 3D crossed regions of the vertically stacked Ag NWs. A Raman spectroscopic analysis of probe dye molecules under photodegradation conditions clearly revealed that the nanogap in the 3D crossed region was crucial for facilitating plasmon-enhanced photocatalysis and plasmon-enhanced spectroscopy.
将半导体二氧化钛纳米颗粒(NPs)紧密集成到堆叠的等离子体银纳米线(NWs)的三维交叉区域,通过银纳米线三维交叉点处强烈的局域表面等离子体共振(LSPR)激发与银纳米线和二氧化钛纳米颗粒界面处高效的热电子转移之间的协同效应,增强了光催化活性。本文探索了基于将二氧化钛纳米颗粒选择性组装到垂直堆叠的银纳米线三维交叉点上的新型混合纳米结构。组装的二氧化钛纳米颗粒直接与三维银纳米线接触;因此,电荷在银纳米线和二氧化钛纳米颗粒的界面处有效分离。复合纳米材料在紫外-可见光范围内表现出高消光,使纳米材料在整个(紫外-可见光)和可见光谱区域成为高性能光催化剂。理论模拟清楚地表明,垂直堆叠的银纳米线的三维交叉区域的局部等离子体场得到了高度增强。对光降解条件下探针染料分子的拉曼光谱分析清楚地表明,三维交叉区域的纳米间隙对于促进等离子体增强光催化和等离子体增强光谱至关重要。