Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, United States.
Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, United States.
Methods. 2019 Apr 15;159-160:35-44. doi: 10.1016/j.ymeth.2019.03.010. Epub 2019 Mar 18.
The initiation of transcription underlies the ability of cells to modulate genome expression as a function of both internal and external signals and the core process of initiation has features that are shared across all domains of life. Specifically, initiation can be sub-divided into promoter recognition, promoter opening, and promoter escape. However, the molecular players and mechanisms used are significantly different in Eukaryotes and Bacteria. In particular, bacterial initiation requires only the formation of RNA polymerase (RNAP) holoenzyme and proceeds as a series of spontaneous conformational changes while eukaryotic initiation requires the formation of the 31-subunit pre-initiation complex (PIC) and often requires ATP hydrolysis by the Ssl2/XPB subunit of the general transcription factor TFIIH. Our mechanistic view of this process in Eukaryotes has recently been improved through a combination of structural and single-molecule approaches which are providing a detailed picture of the structural dynamics that lead to the production of an elongation competent RNAP II and thus, an RNA transcript. Here we provide the methodological details of our single-molecule magnetic tweezers studies of transcription initiation using purified factors from Saccharomyces cerevisiae.
转录的起始是细胞能够根据内部和外部信号调节基因组表达的能力的基础,而起始的核心过程具有在所有生命领域中共享的特征。具体而言,起始可以细分为启动子识别、启动子打开和启动子逃逸。然而,真核生物和细菌中使用的分子参与者和机制有很大的不同。特别是,细菌起始只需要形成 RNA 聚合酶 (RNAP) 全酶,并通过一系列自发的构象变化进行,而真核生物起始需要形成 31 亚基的起始前复合物 (PIC),并且通常需要一般转录因子 TFIIH 的 Ssl2/XPB 亚基水解 ATP。通过结构和单分子方法的结合,我们最近对真核生物中这一过程的机制观点进行了改进,这些方法提供了导致产生延伸能力的 RNAP II 并因此产生 RNA 转录物的结构动力学的详细图片。在这里,我们提供了使用来自酿酒酵母的纯化因子进行单分子磁镊转录起始研究的方法学细节。