Institut Jacques Monod, Centre National de la Recherche Scientifique, University of Paris Diderot and Sorbonne Paris Cité, Paris, France.
Nat Struct Mol Biol. 2015 Jun;22(6):452-7. doi: 10.1038/nsmb.3019. Epub 2015 May 11.
We characterize in real time the composition and catalytic state of the initial Escherichia coli transcription-coupled repair (TCR) machinery by using correlative single-molecule methods. TCR initiates when RNA polymerase (RNAP) stalled by a lesion is displaced by the Mfd DNA translocase, thus giving repair components access to the damage. We previously used DNA nanomanipulation to obtain a nanomechanical readout of protein-DNA interactions during TCR initiation. Here we correlate this signal with simultaneous single-molecule fluorescence imaging of labeled components (RNAP, Mfd or RNA) to monitor the composition and localization of the complex. Displacement of stalled RNAP by Mfd results in loss of nascent RNA but not of RNAP, which remains associated with Mfd as a long-lived complex on the DNA. This complex translocates at ∼4 bp/s along the DNA, in a manner determined by the orientation of the stalled RNAP on the DNA.
我们通过使用关联的单分子方法实时描绘初始大肠杆菌转录偶联修复 (TCR) 机制的组成和催化状态。当 RNA 聚合酶 (RNAP) 因损伤而停滞时,Mfd DNA 转位酶将其置换,从而使修复成分能够接近损伤。我们之前使用 DNA 纳米操作获得了 TCR 起始过程中蛋白质-DNA 相互作用的纳米机械读数。在这里,我们将该信号与标记成分(RNAP、Mfd 或 RNA)的同时单分子荧光成像相关联,以监测复合物的组成和定位。Mfd 置换停滞的 RNAP 会导致新生 RNA 的丢失,但不会导致 RNAP 的丢失,RNAP 会作为一个长寿命的复合物与 Mfd 一起留在 DNA 上。该复合物以 ∼4 bp/s 的速度沿着 DNA 平移,其方式由 DNA 上停滞的 RNAP 的取向决定。