School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia.
Department of Chemistry, The University of Tokyo, Tokyo, 113-8654, Japan.
Nat Commun. 2019 Mar 21;10(1):1300. doi: 10.1038/s41467-019-09325-4.
Conductive elastic composites have been used widely in soft electronics and soft robotics. These composites are typically a mixture of conductive fillers within elastomeric substrates. They can sense strain via changes in resistance resulting from separation of the fillers during elongation. Thus, most elastic composites exhibit a negative piezoconductive effect, i.e. the conductivity decreases under tensile strain. This property is undesirable for stretchable conductors since such composites may become less conductive during deformation. Here, we report a liquid metal-filled magnetorheological elastomer comprising a hybrid of fillers of liquid metal microdroplets and metallic magnetic microparticles. The composite's resistivity reaches a maximum value in the relaxed state and drops drastically under any deformation, indicating that the composite exhibits an unconventional positive piezoconductive effect. We further investigate the magnetic field-responsive thermal properties of the composite and demonstrate several proof-of-concept applications. This composite has prospective applications in sensors, stretchable conductors, and responsive thermal interfaces.
导电弹性复合材料在软电子学和软机器人领域得到了广泛的应用。这些复合材料通常是在弹性体基质中混合导电填料制成的。它们可以通过在伸长过程中填料分离导致的电阻变化来感知应变。因此,大多数弹性复合材料表现出负压阻效应,即随着拉伸应变的增加,电导率降低。对于可拉伸导体来说,这种特性是不理想的,因为在变形过程中,这种复合材料的导电性可能会降低。在这里,我们报告了一种由液态金属微滴和金属磁性微颗粒混合填充的磁流变弹性体。该复合材料的电阻率在松弛状态下达到最大值,并在任何变形下急剧下降,表明该复合材料表现出非传统的正压阻效应。我们进一步研究了复合材料的磁场响应热性能,并展示了几个概念验证应用。这种复合材料在传感器、可拉伸导体和响应式热界面方面具有应用前景。