Bartlett Michael D, Kazem Navid, Powell-Palm Matthew J, Huang Xiaonan, Sun Wenhuan, Malen Jonathan A, Majidi Carmel
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213.
Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213.
Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):2143-2148. doi: 10.1073/pnas.1616377114. Epub 2017 Feb 13.
Soft dielectric materials typically exhibit poor heat transfer properties due to the dynamics of phonon transport, which constrain thermal conductivity () to decrease monotonically with decreasing elastic modulus (). This thermal-mechanical trade-off is limiting for wearable computing, soft robotics, and other emerging applications that require materials with both high thermal conductivity and low mechanical stiffness. Here, we overcome this constraint with an electrically insulating composite that exhibits an unprecedented combination of metal-like thermal conductivity, an elastic compliance similar to soft biological tissue (Young's modulus < 100 kPa), and the capability to undergo extreme deformations (>600% strain). By incorporating liquid metal (LM) microdroplets into a soft elastomer, we achieve a ∼25× increase in thermal conductivity (4.7 ± 0.2 W⋅m⋅K) over the base polymer (0.20 ± 0.01 W⋅m·K) under stress-free conditions and a ∼50× increase (9.8 ± 0.8 W⋅m·K) when strained. This exceptional combination of thermal and mechanical properties is enabled by a unique thermal-mechanical coupling that exploits the deformability of the LM inclusions to create thermally conductive pathways in situ. Moreover, these materials offer possibilities for passive heat exchange in stretchable electronics and bioinspired robotics, which we demonstrate through the rapid heat dissipation of an elastomer-mounted extreme high-power LED lamp and a swimming soft robot.
由于声子输运的动力学特性,软介电材料通常表现出较差的热传递性能,这使得热导率()随着弹性模量()的降低而单调下降。这种热-机械权衡对于可穿戴计算、软体机器人以及其他需要兼具高导热性和低机械刚度材料的新兴应用来说是一个限制。在此,我们通过一种电绝缘复合材料克服了这一限制,该复合材料展现出了前所未有的组合特性:类似金属的热导率、与柔软生物组织相似的弹性柔顺性(杨氏模量<100 kPa)以及承受极端变形(>600%应变)的能力。通过将液态金属(LM)微滴融入软弹性体中,我们在无应力条件下实现了相对于基础聚合物(0.20±0.01 W·m·K)热导率提高约25倍(4.7±0.2 W·m·K),在应变时提高约50倍(9.8±0.8 W·m·K)。这种独特的热-机械耦合利用了LM夹杂物的可变形性来原位创建热传导路径,从而实现了热性能和机械性能的卓越结合。此外,这些材料为可拉伸电子器件和仿生机器人中的被动热交换提供了可能性,我们通过安装在弹性体上的极高功率LED灯的快速散热以及一个游泳软体机器人展示了这一点。