Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA.
Integrated Cardio Metabolic Center, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
Sci Rep. 2019 Mar 21;9(1):4965. doi: 10.1038/s41598-019-40768-3.
Type I diabetes (T1D) is caused by immune-mediated destruction of pancreatic beta cells. This process is triggered, in part, by specific (aa 9-23) epitopes of the insulin Β chain. Previously, fish insulins were used clinically in patients allergic to bovine or porcine insulin. Fish and human insulin differ by two amino acids in the critical immunogenic region (aa 9-23) of the B chain. We hypothesized that β cells synthesizing fish insulin would be less immunogenic in a mouse model of T1D. Transgenic NOD mice in which Greater Amberjack fish (Seriola dumerili) insulin was substituted for the insulin 2 gene were generated (mouse Ins1 mouse Ins2 fish Ins2). In these mice, pancreatic islets remained free of autoimmune attack. To determine whether such reduction in immunogenicity is sufficient to protect β cells from autoimmunity upon transplantation, we transplanted fish Ins2 transgenic (expressing solely Seriola dumerili Ins2), NOD, or B16:A-dKO islets under the kidney capsules of 5 weeks old female NOD wildtype mice. The B:Y16A Β chain substitution has been previously shown to be protective of T1D in NOD mice. NOD mice receiving Seriola dumerili transgenic islet transplants showed a significant (p = 0.004) prolongation of their euglycemic period (by 6 weeks; up to 18 weeks of age) compared to un-manipulated female NOD (diabetes onset at 12 weeks of age) and those receiving B16:A-dKO islet transplants (diabetes onset at 12 weeks of age). These data support the concept that specific amino acid sequence modifications can reduce insulin immunogenicity. Additionally, our study shows that alteration of a single epitope is not sufficient to halt an ongoing autoimmune response. Which, and how many, T cell epitopes are required and suffice to perpetuate autoimmunity is currently unknown. Such studies may be useful to achieve host tolerance to β cells by inactivating key immunogenic epitopes of stem cell-derived β cells intended for transplantation.
1 型糖尿病(T1D)是由胰腺β细胞的免疫介导破坏引起的。这个过程部分是由胰岛素 Β 链的特定(aa9-23)表位触发的。以前,鱼类胰岛素在对牛或猪胰岛素过敏的患者中临床使用。鱼类和人类胰岛素在 B 链的关键免疫原性区域(aa9-23)中存在两个氨基酸差异。我们假设在 T1D 的小鼠模型中,合成鱼类胰岛素的β细胞的免疫原性较低。生成了用大比目鱼(Seriola dumerili)胰岛素替代胰岛素 2 基因的转基因 NOD 小鼠(小鼠 Ins1 小鼠 Ins2 鱼 Ins2)。在这些小鼠中,胰岛仍然没有受到自身免疫攻击。为了确定这种免疫原性的降低是否足以保护β细胞免受移植后的自身免疫,我们将鱼胰岛素 2 转基因(仅表达大比目鱼胰岛素 2)、NOD 或 B16:A-dKO 胰岛移植到 5 周龄雌性 NOD 野生型小鼠的肾脏包膜下。先前的研究表明,B:Y16A Β 链取代对 NOD 小鼠的 T1D 具有保护作用。与未经处理的雌性 NOD 相比(糖尿病发病年龄为 12 周)和接受 B16:A-dKO 胰岛移植的小鼠相比(糖尿病发病年龄为 12 周),接受大比目鱼转基因胰岛移植的 NOD 小鼠的血糖正常期显著延长(p=0.004;延长 6 周;直至 18 周龄)。这些数据支持这样的概念,即特定的氨基酸序列修饰可以降低胰岛素的免疫原性。此外,我们的研究表明,改变单个表位不足以阻止正在进行的自身免疫反应。目前尚不清楚需要和足以维持自身免疫的 T 细胞表位是哪些,以及有多少。这些研究可能有助于通过使干细胞衍生的β细胞的关键免疫原性表位失活来实现对β细胞的宿主耐受,这些β细胞旨在用于移植。