School of Chemistry, the University of Sydney, Sydney, NSW 2006, Australia.
Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK and Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BR, UK.
Dalton Trans. 2019 Apr 14;48(14):4730-4741. doi: 10.1039/c9dt00432g. Epub 2019 Mar 22.
The synthesis of polycrystalline samples of B-site doped SrRuMO with x≤ 0.2 by solid state methods is described for a number of dopants (M = Mg, Mn, Fe, Co, Ni, Cu, or Zn) and the structures of these established using Synchrotron X-ray powder diffraction, and for SrRuCuO high resolution neutron diffraction. With the exception of M = Cu, samples with x = 0.2 form an orthorhombic Pbnm type perovskite structure at room temperature and these exhibit a sequence of phase transitions upon heating associated with the gradual reduction in the cooperative tilting of the corner sharing octahedra. SrRuCuO forms a unique monoclinic structure at low temperatures and this transforms to the cubic Pm3[combining macron]m structure via an I4/mcm intermediate upon heating. The magnetic and electronic properties of the samples have been studied. Doping results in a decrease in the Curie temperature and at x = 0.2 all the samples are insulators. This is a consequence of the partial oxidation of the Ru cation that narrows the Ru 4d bands coupled with the suppression of the itinerant nature of the Ru 4d electrons due to the random distribution of the dopant cations. Ru L-edge X-ray absorption spectroscopy of the Cu doped samples reveal a gradual increase in the average Ru oxidation sate upon doping. Electrical resistivity measurements show that doping increases the resistivity of the samples, and the temperature dependence of the resistivities are consistent with Arrhenius-type charge conduction.
采用固态方法合成了 B 位掺杂 SrRuMO(x≤0.2)的多晶样品,其中 M 为 Mg、Mn、Fe、Co、Ni、Cu 或 Zn 等多种掺杂剂,并通过同步加速器 X 射线粉末衍射确定了这些结构,同时还对 SrRuCuO 进行了高分辨率中子衍射。除了 M = Cu 以外,x = 0.2 的样品在室温下形成正交 Pbnm 型钙钛矿结构,并且在加热过程中会发生一系列相变,伴随着顶角共享八面体的协同倾斜逐渐减少。SrRuCuO 在低温下形成独特的单斜结构,并且在加热过程中通过 I4/mcm 中间相转变为立方 Pm3[combining macron]m 结构。对样品的磁性和电子性质进行了研究。掺杂会导致居里温度降低,在 x = 0.2 时,所有样品都是绝缘体。这是由于 Ru 阳离子的部分氧化导致 Ru 4d 带变窄,同时由于掺杂剂阳离子的随机分布抑制了 Ru 4d 电子的迁移性质,从而导致了 Ru 4d 电子的迁移性质。Cu 掺杂样品的 Ru L 边 X 射线吸收光谱表明,随着掺杂的进行,平均 Ru 氧化态逐渐增加。电阻率测量表明,掺杂会增加样品的电阻率,并且电阻率的温度依赖性与 Arrhenius 型电荷传导一致。