Department of Civil Engineering, University of Minnesota Duluth, Duluth, Minnesota, USA.
Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, USA.
Environ Toxicol Chem. 2019 Jun;38(6):1231-1244. doi: 10.1002/etc.4410.
It is well established that sulfide can be toxic to rooted aquatic plants. However, a detailed description of the effects of cumulative sulfate loads on sulfide and iron (Fe) porewater geochemistry, plant exposure, and ecological response is lacking. Over 4 yr, we experimentally manipulated sulfate loads to self-perpetuating wild rice (Zizania palustris) populations and monitored increases in the ratio of sulfur (S) to Fe in sediment across a range of sulfide loading rates driven by overlying water sulfate. Because natural settings are complicated by ongoing Fe and S loads from surface and groundwater, this experimental setting provides a tractable system to describe the impacts of increased S loading on Fe-S porewater geochemistry. In the experimental mesocosms, the rate of sulfide accumulation in bulk sediment increased linearly with overlying water sulfate concentration up to 300 µg-SO cm . Seedling survival at the beginning of the annual life cycle and seed mass and maturation at the end of the annual life cycle all decreased at porewater sulfide concentrations between 0.4 and 0.7 µg cm . Changes to porewater sulfide, plant emergence, and plant nutrient uptake during seed production were closely related to the ratio of S to Fe in sediment. A mass balance analysis showed that porewater sulfide remained a small and relatively transient phase compared to sulfate in the overlying water and Fe in the sediment solid phase. The results illuminate the evolution of the geochemical setting and timescales over which 4 yr of cumulative sulfate loading resulted in a wholesale shift from Fe-dominated to sulfide-dominated porewater chemistry. This shift was accompanied by detrimental effects to, and eventual extirpation of, self-perpetuating wild rice populations. Environ Toxicol Chem 2019;38:1231-1244. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
已有大量研究证实,硫化物可能对水生植物根系有毒害作用。然而,目前仍缺乏关于硫酸盐累积负荷对硫化物和铁(Fe)孔隙水地球化学、植物暴露和生态响应影响的详细描述。在超过 4 年的时间里,我们通过人为控制硫酸盐负荷,对野生稻(Zizania palustris)自然种群进行了实验操作,并监测了在不同硫酸盐负荷率下,因上覆水硫酸盐导致的沉积物中硫(S)与 Fe 比值的增加情况。由于自然环境受到地表水和地下水的 Fe 和 S 负荷的影响,这种实验设置为描述增加的 S 负荷对 Fe-S 孔隙水地球化学的影响提供了一个可行的系统。在实验性中尺度模型中,随着上覆水硫酸盐浓度的增加,底泥中硫化物的积累速率呈线性增加,直至 300 µg-SO cm 。在每年生命周期开始时,幼苗的存活率以及在生命周期结束时种子的质量和成熟度均随着孔隙水中硫化物浓度在 0.4 至 0.7 µg cm 之间的增加而降低。在种子生产过程中,孔隙水中硫化物、植物出苗和植物养分吸收的变化与沉积物中 S 与 Fe 的比值密切相关。质量平衡分析表明,与上覆水中的硫酸盐和沉积物固相中的 Fe 相比,孔隙水中的硫化物仍然是一个较小且相对短暂的阶段。这些结果阐明了在 4 年的累积硫酸盐负荷作用下,地球化学环境的演变以及达到整个由 Fe 主导向硫化物主导的孔隙水化学转变所需的时间尺度。这种转变伴随着对自我维持的野生稻种群的有害影响,并最终导致其灭绝。环境毒理化学 2019;38:1231-1244。© 2019 作者。环境毒理化学由 Wiley 期刊出版公司代表 SETAC 出版。