Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, USA.
J Chem Phys. 2019 Mar 21;150(11):114706. doi: 10.1063/1.5066237.
We demonstrate heterodyne detected transient vibrational sum frequency generation (VSFG) spectroscopy and use it to probe transient electric fields caused by interfacial charge transfer at organic semiconductor and metal interfaces. The static and transient VSFG spectra are composed of both non-resonant and molecular resonant responses. To further disentangle both contributions, we apply phase rotation to make the imaginary part of the spectra be purely molecular responses and the real part of the spectra be dominated by non-resonant signals. By separating non-resonant and molecular signals, we can track their responses to the transient electric-fields at interfaces independently. This technique combined with the phase sensitivity gained by heterodyne detection allows us to successfully identify three types of photoinduced dynamics at organic semiconductor/metal interfaces: coherent artifacts, optical excitations that do not lead to charge transfer, and direct charge transfers. The ability to separately follow the influence of built-in electric fields to interfacial molecules, regardless of strong non-resonant signals, will enable tracking of ultrafast charge dynamics with molecular specificities on molecular optoelectronics, photovoltaics, and solar materials.
我们展示了外差探测瞬态振动和频产生(VSFG)光谱,并将其用于探测有机半导体和金属界面处界面电荷转移引起的瞬态电场。静态和瞬态 VSFG 光谱由非共振和分子共振响应组成。为了进一步区分这两种贡献,我们应用相位旋转使光谱的虚部纯粹是分子响应,而光谱的实部主要由非共振信号主导。通过分离非共振和分子信号,我们可以独立地跟踪它们对界面瞬态电场的响应。这种技术与外差检测获得的相位灵敏度相结合,使我们能够成功地识别有机半导体/金属界面上的三种类型的光致动力学:相干伪影、不导致电荷转移的光激发以及直接电荷转移。无论非共振信号多么强烈,我们都能够独立地跟踪内置电场对界面分子的影响,这将使我们能够在分子光电学、光伏和太阳能材料上跟踪具有分子特异性的超快电荷动力学。