Suppr超能文献

全聚合物供体-受体异质结中的直接界面电荷转移

Direct Interfacial Charge Transfer in All-Polymer Donor-Acceptor Heterojunctions.

作者信息

Wang Chenglai, Jing Yuancheng, Chen Liying, Xiong Wei

机构信息

Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093-0358, United States.

Material Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, MC 0418, La Jolla, California 92093-0418, United States.

出版信息

J Phys Chem Lett. 2022 Sep 22;13(37):8733-8739. doi: 10.1021/acs.jpclett.2c02130. Epub 2022 Sep 12.

Abstract

Direct charge transfer at wet-processed organic/organic heterojunction interfaces is observed using femtosecond interfacial sensitive spectroscopy. UV-vis absorption and ultraviolet photoelectron spectroscopy both indicate that a new interfacial energy gap (∼1.2 eV) exists when an interface is formed between regioregular poly(3-hexylthiophene-2,5-diyl) and poly(benzimidazobenzophenanthroline). Resonant pumping at 1.2 eV creates an electric field-induced second-order optical signal, suggesting the existence of a transient electric field due to separated electrons and holes at interfaces, which recombine through a nongeminate process. The fact that direct charge transfer exists at wet-processed organic/organic heterojunctions provides a physical foundation for the previously reported ground-state charge transfer phenomenon. Also, it creates new opportunities to better control charge transfer with preserved momentum and spins at organic material interfaces for spintronic applications.

摘要

利用飞秒界面敏感光谱观察到了湿处理有机/有机异质结界面处的直接电荷转移。紫外-可见吸收光谱和紫外光电子能谱均表明,当在区域规整的聚(3-己基噻吩-2,5-二亚基)和聚(苯并咪唑并苯并菲咯啉)之间形成界面时,会存在一个新的界面能隙(约1.2电子伏特)。在1.2电子伏特处的共振泵浦产生了电场诱导的二阶光信号,这表明由于界面处分离的电子和空穴而存在瞬态电场,它们通过非简并过程复合。湿处理有机/有机异质结处存在直接电荷转移这一事实为先前报道的基态电荷转移现象提供了物理基础。此外,它为在自旋电子学应用中更好地控制有机材料界面处具有保留动量和自旋的电荷转移创造了新机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a030/9511559/8f3262766bf5/jz2c02130_0001.jpg

相似文献

1
Direct Interfacial Charge Transfer in All-Polymer Donor-Acceptor Heterojunctions.
J Phys Chem Lett. 2022 Sep 22;13(37):8733-8739. doi: 10.1021/acs.jpclett.2c02130. Epub 2022 Sep 12.
2
Ultrafast exciton dissociation followed by nongeminate charge recombination in PCDTBT:PCBM photovoltaic blends.
J Am Chem Soc. 2011 Jun 22;133(24):9469-79. doi: 10.1021/ja201837e. Epub 2011 May 26.
4
Revelation of Interfacial Energetics in Organic Multiheterojunctions.
Adv Sci (Weinh). 2016 Dec 1;4(4):1600331. doi: 10.1002/advs.201600331. eCollection 2017 Apr.
5
Molecular bulk heterojunctions: an emerging approach to organic solar cells.
Acc Chem Res. 2009 Nov 17;42(11):1719-30. doi: 10.1021/ar900041b.
6
Interfacial Charge Transfer Circumventing Momentum Mismatch at Two-Dimensional van der Waals Heterojunctions.
Nano Lett. 2017 Jun 14;17(6):3591-3598. doi: 10.1021/acs.nanolett.7b00748. Epub 2017 May 10.
8
9
Probing charge transfer states at organic and hybrid internal interfaces by photothermal deflection spectroscopy.
J Phys Condens Matter. 2019 Mar 27;31(12):124001. doi: 10.1088/1361-648X/aafa4e. Epub 2018 Dec 20.

引用本文的文献

1
Tip-enhanced nanocavities amplify the sum frequency generation.
Light Sci Appl. 2025 Aug 22;14(1):286. doi: 10.1038/s41377-025-01946-3.
2
Direct and Indirect Interfacial Electron Transfer at a Plasmonic p-CuS/CdS Heterojunction.
ACS Nano. 2025 Jan 14;19(1):1547-1556. doi: 10.1021/acsnano.4c14556. Epub 2025 Jan 1.

本文引用的文献

1
Correlating Charge-Transfer State Lifetimes with Material Energetics in Polymer:Non-Fullerene Acceptor Organic Solar Cells.
J Am Chem Soc. 2021 May 26;143(20):7599-7603. doi: 10.1021/jacs.1c00584. Epub 2021 Apr 23.
2
Chiral Induced Spin Selectivity Gives a New Twist on Spin-Control in Chemistry.
Acc Chem Res. 2020 Nov 17;53(11):2659-2667. doi: 10.1021/acs.accounts.0c00485. Epub 2020 Oct 12.
3
Ground-state electron transfer in all-polymer donor-acceptor heterojunctions.
Nat Mater. 2020 Jul;19(7):738-744. doi: 10.1038/s41563-020-0618-7. Epub 2020 Mar 9.
4
Dopant-Induced Ordering of Amorphous Regions in Regiorandom P3HT.
J Phys Chem Lett. 2019 Sep 5;10(17):4929-4934. doi: 10.1021/acs.jpclett.9b02070. Epub 2019 Aug 14.
6
Correlation of Coexistent Charge Transfer States in FTCNQ-Doped P3HT with Microstructure.
J Phys Chem Lett. 2018 Dec 6;9(23):6871-6877. doi: 10.1021/acs.jpclett.8b03104. Epub 2018 Nov 21.
7
Long-Lived, Non-Geminate, Radiative Recombination of Photogenerated Charges in a Polymer/Small-Molecule Acceptor Photovoltaic Blend.
J Am Chem Soc. 2018 Aug 8;140(31):9996-10008. doi: 10.1021/jacs.8b05834. Epub 2018 Jul 26.
8
Ultrafast Charge Transfer at a Quantum Dot/2D Materials Interface Probed by Second Harmonic Generation.
J Phys Chem Lett. 2018 Aug 2;9(15):4227-4232. doi: 10.1021/acs.jpclett.8b01606. Epub 2018 Jul 16.
9
Ultrafast Charge Transfer in Perovskite Nanowire/2D Transition Metal Dichalcogenide Heterostructures.
J Phys Chem Lett. 2018 Apr 5;9(7):1655-1662. doi: 10.1021/acs.jpclett.8b00260. Epub 2018 Mar 19.
10
Singlet Fission Involves an Interplay between Energetic Driving Force and Electronic Coupling in Perylenediimide Films.
J Am Chem Soc. 2018 Jan 17;140(2):814-826. doi: 10.1021/jacs.7b11888. Epub 2018 Jan 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验