Suppr超能文献

从遗传疾病中获得的骨骼发育的机制见解。

Mechanistic insights into skeletal development gained from genetic disorders.

机构信息

School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong.

School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong.

出版信息

Curr Top Dev Biol. 2019;133:343-385. doi: 10.1016/bs.ctdb.2019.02.002. Epub 2019 Mar 6.

Abstract

A complex cascade of highly regulated processes of cell fate determination, differentiation, proliferation and transdifferentiation dictate the patterning, morphogenesis and growth of the vertebrate skeleton, perturbation of which results in malformation. In humans over 450 different dysplasias involving the skeletal system constitute a significant fraction of documented Mendelian disorders. The combination of clinical, phenotypic characterization of rare human skeletal dysmorphologies, the discovery of causative mutations and functional validation in animal models has contributed enormously to the understanding of molecular control of skeletal development. These studies revealed a myriad of genes and pathways, such as WNT, Hedgehog (HH), planar cell polarity and primary cilia, as key regulators for skeletal patterning, growth and homeostasis. The generation of mouse models recapitulating human congenital skeletal dysplasia has provided mechanistic insights into the diverse pathologies caused by single gene mutations, integrated action of developmental pathways such as WNT and HH and the role of stress responses. Technological developments in whole genome and exome sequencing have accelerated the discovery of disease-causing mutations and are changing approaches for diagnosis. The discovery that non-coding variants and disorganization of the 3D genome are associated with limb patterning disorders has revealed an additional level of complexity in the regulatory framework of skeletal development and disease mechanisms. This chapter focuses on a selection of human skeletal pathologies which illustrate how new findings about the coding and noncoding genome, combined with functional modeling, are contributing to deeper understanding of skeletal development, mechanisms of disease, with therapeutic potential for chondrodysplasias.

摘要

一个复杂的、高度调节的细胞命运决定、分化、增殖和转分化过程的级联,决定了脊椎动物骨骼的模式形成、形态发生和生长,这些过程的干扰会导致畸形。在人类中,超过 450 种不同的骨骼系统发育不良构成了已记录的孟德尔疾病的重要部分。罕见人类骨骼发育不良的临床和表型特征的综合分析、致病突变的发现以及在动物模型中的功能验证,极大地促进了对骨骼发育分子控制的理解。这些研究揭示了无数的基因和途径,如 WNT、Hedgehog(HH)、平面细胞极性和初级纤毛,作为骨骼模式形成、生长和稳态的关键调节剂。重现人类先天性骨骼发育不良的小鼠模型的产生,为理解单一基因突变、WNT 和 HH 等发育途径的综合作用以及应激反应的作用引起的多种病理提供了机制上的见解。全基因组和外显子组测序技术的发展加速了致病突变的发现,并改变了诊断方法。发现非编码变异和 3D 基因组的组织紊乱与肢体模式形成障碍有关,这揭示了骨骼发育和疾病机制的调控框架的另一个复杂层面。本章重点介绍了一些人类骨骼病理学,这些研究说明了关于编码和非编码基因组的新发现,结合功能建模,如何有助于深入理解骨骼发育、疾病机制,并为软骨发育不良提供治疗潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验