Instituto de Ciencia Molecular (ICMol), Universitat de València, Paterna, Spain.
Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC - Universidad de Zaragoza, Zaragoza, Spain.
Nat Chem. 2019 Apr;11(4):301-309. doi: 10.1038/s41557-019-0232-y.
Spins in solids or in molecules possess discrete energy levels, and the associated quantum states can be tuned and coherently manipulated by means of external electromagnetic fields. Spins therefore provide one of the simplest platforms to encode a quantum bit (qubit), the elementary unit of future quantum computers. Performing any useful computation demands much more than realizing a robust qubit-one also needs a large number of qubits and a reliable manner with which to integrate them into a complex circuitry that can store and process information and implement quantum algorithms. This 'scalability' is arguably one of the challenges for which a chemistry-based bottom-up approach is best-suited. Molecules, being much more versatile than atoms, and yet microscopic, are the quantum objects with the highest capacity to form non-trivial ordered states at the nanoscale and to be replicated in large numbers using chemical tools.
固体或分子中的电子自旋具有分立的能级,通过外加电磁场可以对其量子态进行调谐和相干操控。因此,自旋为量子比特(qubit)的编码提供了最简单的平台之一,qubit 是未来量子计算机的基本单元。执行任何有用的计算都需要比实现一个稳健的 qubit 更多的东西——还需要大量的 qubit 以及一种可靠的方法将它们集成到一个复杂的电路中,该电路可以存储和处理信息并实现量子算法。这种“可扩展性”可以说是化学为基础的自下而上的方法最适合解决的挑战之一。分子比原子更具多样性,同时又具有微观性,是在纳米尺度上形成非平凡有序态并使用化学工具大量复制的量子物体,具有最高的能力。