Suppr超能文献

基于模型的数据校正在连续片剂制造中提高传感器网络稳健性。

Sensor Network Robustness Using Model-Based Data Reconciliation for Continuous Tablet Manufacturing.

机构信息

Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906.

Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906.

出版信息

J Pharm Sci. 2019 Aug;108(8):2599-2612. doi: 10.1016/j.xphs.2019.03.011. Epub 2019 Mar 20.

Abstract

Advances in continuous manufacturing in the pharmaceutical industry necessitate reliable process monitoring systems that are capable of handling measurement errors inherent in all sensor technologies and detecting measurement outliers to ensure operational reliability. The purpose of this work was to demonstrate data reconciliation (DR) and gross error detection methods as real-time process management tools to accomplish robust process monitoring. DR mitigates the effects of random measurement errors, while gross error detection identifies nonrandom sensor malfunctions. DR is an established methodology in other industries (i.e., oil and gas) and was recently investigated for use in drug product continuous manufacturing. This work demonstrates the development and implementation of model-based steady-state data reconciliation on 2 different end-to-end continuous tableting lines: direct compression and dry granulation. These tableting lines involve different equipment and sensor configurations, with sensor network redundancy achieved using equipment-embedded sensors and in-line process analytical technology tools for the critical process parameters and critical quality attributes. The nonlinearity of the process poses additional challenges to solve the steady-state data reconciliation optimization problem in real time. At-line and off-line measurements were used to validate the framework results.

摘要

制药行业连续制造的进步需要可靠的过程监测系统,该系统能够处理所有传感器技术固有的测量误差,并检测测量异常值,以确保操作可靠性。本工作旨在展示数据协调(DR)和粗大误差检测方法作为实时过程管理工具,以实现强大的过程监测。DR 减轻了随机测量误差的影响,而粗大误差检测则识别出非随机传感器故障。DR 在其他行业(即石油和天然气)中是一种成熟的方法,最近也被研究用于药物产品连续制造。本工作展示了基于模型的稳态数据协调在 2 条不同的端到端连续压片线上的开发和实施:直接压缩和干法造粒。这些压片线涉及不同的设备和传感器配置,使用设备嵌入式传感器和在线过程分析技术工具来实现传感器网络冗余,以用于关键工艺参数和关键质量属性。该过程的非线性给实时解决稳态数据协调优化问题带来了额外的挑战。在线和离线测量用于验证框架结果。

相似文献

5
Sensor Network for Continuous Tablet Manufacturing.用于连续片剂制造的传感器网络
Int Symp Process Syst Eng. 2018;44:2149-2154. doi: 10.1016/b978-0-444-64241-7.50353-0.
6
Deep learning for continuous manufacturing of pharmaceutical solid dosage form.深度学习在药物固体制剂连续制造中的应用。
Eur J Pharm Biopharm. 2020 Aug;153:95-105. doi: 10.1016/j.ejpb.2020.06.002. Epub 2020 Jun 11.

本文引用的文献

8
A protocol for the classification of powder compression characteristics.粉末压缩特性分类方案。
Eur J Pharm Biopharm. 2012 Jan;80(1):209-16. doi: 10.1016/j.ejpb.2011.09.006. Epub 2011 Sep 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验