Suppr超能文献

揭示野燕麦中甲磺隆的植物毒性和基于代谢的除草剂抗性:使用蛋白质组学研究调控机制。

Unravelling mesosulfuron-methyl phytotoxicity and metabolism-based herbicide resistance in Alopecurus aequalis: Insight into regulatory mechanisms using proteomics.

机构信息

College of Plant Protection, Shandong Agricultural University, Tai'an, China; Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, China.

State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China.

出版信息

Sci Total Environ. 2019 Jun 20;670:486-497. doi: 10.1016/j.scitotenv.2019.03.089. Epub 2019 Mar 7.

Abstract

Non-target-site based resistance (NTSR), a poorly understood multigenic trait, has evolved as the greatest threat to crop production worldwide, by endowing weed plants an unpredictable pattern of resistance to herbicides. Our recent work with multiple-herbicide-resistant shortawn foxtail (Alopecurus aequalis Sobol.) biotype has preliminary indicated that cytochrome P450s-involved enhanced rate of mesosulfuron-methyl metabolism may involve in the NTSR. Here by further determining the differences in glutathione S-transferase (GST) activity and uptake and metabolic rates of mesosulfuron between resistant (R) and susceptible (S) A. aequalis plants, and associating them with endogenous differently regulated proteins (DEPs) identified from combinational proteomics analyses, we provided direct evidences on the enhanced herbicide degradation in resistant plants. Subsequently, the physiological phenotypes of photosynthesis, chlorophyll fluorescence, and antioxidation were compared between R and S plants and linked with correlative DEPs, indicating a series of key pathways including solar energy capture, photosynthetic electron transport, redox homeostasis, carbon fixation, photorespiration, and reactive oxygen species scavenging in susceptible plants were broken or severely damaged by mesosulfuron stress. In comparison, resistant plants have evolved enhanced herbicide degradation to minimize the accumulation of mesosulfuron and protect the photosynthesis and ascorbate-glutathione cycle against the adverse effects of chemical injury, giving A. aequalis plants a NTSR phenotype. Additionally, three key proteins respectively annotated as esterase, GST, and glucosyltransferase were identified and enabled as potential transcriptional markers for quick diagnosing the metabolic mesosulfuron resistance in A. aequalis species.

摘要

非靶标位点抗性(NTSR)是一种多基因性状,由于使杂草植物对除草剂产生不可预测的抗性模式,因此已成为全球作物生产的最大威胁。我们最近对多除草剂抗性的野燕麦(Alopecurus aequalis Sobol.)生物型的研究初步表明,细胞色素 P450 参与的加快啶磺草胺代谢的速度可能与 NTSR 有关。在此,我们通过进一步确定抗性(R)和敏感(S)A. aequalis 植物之间谷胱甘肽 S-转移酶(GST)活性和吸收以及啶磺草胺代谢率的差异,并将其与组合蛋白质组学分析中鉴定的内源性差异调控蛋白(DEPs)相关联,为抗性植物中增强的除草剂降解提供了直接证据。随后,比较了 R 和 S 植物之间光合作用、叶绿素荧光和抗氧化作用的生理表型,并将其与相关的 DEPs 相关联,表明一系列关键途径,包括太阳能捕获、光合作用电子传递、氧化还原稳态、碳固定、光呼吸和活性氧清除,在敏感植物中被啶磺草胺胁迫破坏或严重受损。相比之下,抗性植物已经进化出增强的除草剂降解能力,以最大程度地减少啶磺草胺的积累,并保护光合作用和抗坏血酸-谷胱甘肽循环免受化学伤害的不利影响,从而使 A. aequalis 植物具有 NTSR 表型。此外,还鉴定了三个分别注释为酯酶、GST 和葡萄糖基转移酶的关键蛋白质,并将其作为快速诊断 A. aequalis 物种代谢啶磺草胺抗性的潜在转录标记。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验