Suppr超能文献

基于人群的病例对照研究中风险函数的估计

On Estimation of the Hazard Function from Population-based Case-Control Studies.

作者信息

Hsu Li, Gorfine Malka, Zucker David M

机构信息

Biostatistics and Biomathematics, Fred Hutchinson Cancer Research Center.

Department of Statistics and Operations Research, Tel Aviv University.

出版信息

J Am Stat Assoc. 2018;113(522):560-570. doi: 10.1080/01621459.2017.1356315. Epub 2018 Jun 12.

Abstract

The population-based case-control study design has been widely used for studying the etiology of chronic diseases. It is well established that the Cox proportional hazards model can be adapted to the case-control study and hazard ratios can be estimated by (conditional) logistic regression model with time as either a matched set or a covariate (Prentice and Breslow, 1978). However, the baseline hazard function, a critical component in absolute risk assessment, is unidentifiable, because the ratio of cases and controls is controlled by the investigators and does not reflect the true disease incidence rate in the population. In this paper we propose a simple and innovative approach, which makes use of routinely collected family history information, to estimate the baseline hazard function for any logistic regression model that is fit to the risk factor data collected on cases and controls. We establish that the proposed baseline hazard function estimator is consistent and asymptotically normal and show via simulation that it performs well in finite samples. We illustrate the proposed method by a population-based case-control study of prostate cancer where the association of various risk factors is assessed and the family history information is used to estimate the baseline hazard function.

摘要

基于人群的病例对照研究设计已被广泛用于研究慢性病的病因。众所周知,Cox比例风险模型可适用于病例对照研究,并且风险比可通过以时间作为匹配集或协变量的(条件)逻辑回归模型来估计(Prentice和Breslow,1978)。然而,绝对风险评估中的关键组成部分——基线风险函数是无法识别的,因为病例与对照的比例由研究者控制,并不反映人群中的真实疾病发病率。在本文中,我们提出了一种简单且创新的方法,该方法利用常规收集的家族史信息,为任何适合病例和对照所收集风险因素数据的逻辑回归模型估计基线风险函数。我们证明所提出的基线风险函数估计量是一致的且渐近正态,并通过模拟表明它在有限样本中表现良好。我们通过一项基于人群的前列腺癌病例对照研究来说明所提出的方法,在该研究中评估了各种风险因素的关联,并使用家族史信息来估计基线风险函数。

相似文献

1
On Estimation of the Hazard Function from Population-based Case-Control Studies.
J Am Stat Assoc. 2018;113(522):560-570. doi: 10.1080/01621459.2017.1356315. Epub 2018 Jun 12.
2
Empirical Comparison of the Breslow Estimator and the Kalbfleisch Prentice Estimator for Survival Functions.
J Biom Biostat. 2018;9(2). doi: 10.4172/2155-6180.1000392. Epub 2018 Feb 28.
3
Cox regression with missing covariate data using a modified partial likelihood method.
Lifetime Data Anal. 2016 Oct;22(4):570-88. doi: 10.1007/s10985-015-9351-y. Epub 2015 Oct 22.
4
Analysis of incidence and prognosis from 'extreme' case-control designs.
Stat Med. 2014 Dec 30;33(30):5388-98. doi: 10.1002/sim.6245. Epub 2014 Jul 1.
5
Multivariate Failure Times Regression with a Continuous Auxiliary Covariate.
J Multivar Anal. 2010 Mar 1;101(3):679-691. doi: 10.1016/j.jmva.2009.09.008.
6
Adjusted time-varying population attributable hazard in case-control studies.
Stat Methods Med Res. 2020 Jan;29(1):243-257. doi: 10.1177/0962280219831725. Epub 2019 Feb 25.
7
Multivariate survival analysis for case-control family data.
Biostatistics. 2006 Jul;7(3):387-98. doi: 10.1093/biostatistics/kxj014. Epub 2005 Dec 20.
8
A pairwise likelihood augmented Cox estimator for left-truncated data.
Biometrics. 2018 Mar;74(1):100-108. doi: 10.1111/biom.12746. Epub 2017 Aug 29.
10
Proportional Hazards Model with Covariate Measurement Error and Instrumental Variables.
J Am Stat Assoc. 2014 Dec 1;109(504):1636-1646. doi: 10.1080/01621459.2014.896805.

引用本文的文献

1
The Association of the Metabolic Score for Insulin Resistance (METS-IR) with Prehypertension in Normoglycemic Individuals.
Int J Endocrinol Metab. 2024 Aug 3;22(2):e145894. doi: 10.5812/ijem-145894. eCollection 2024 Apr.
2
causalCmprsk: An R package for nonparametric and Cox-based estimation of average treatment effects in competing risks data.
Comput Methods Programs Biomed. 2023 Dec;242:107819. doi: 10.1016/j.cmpb.2023.107819. Epub 2023 Sep 21.
3
Semiparametric regression analysis of bivariate censored events in a family study of Alzheimer's disease.
Biostatistics. 2022 Dec 12;24(1):32-51. doi: 10.1093/biostatistics/kxab014.

本文引用的文献

1
Conditional and Marginal Estimates in Case-Control Family Data - Extensions and Sensitivity Analyses.
J Stat Comput Simul. 2012 Oct 1;82(10):1449-1470. doi: 10.1080/00949655.2011.581669. Epub 2012 Jul 5.
6
Attributable risk function in the proportional hazards model for censored time-to-event.
Biostatistics. 2006 Oct;7(4):515-29. doi: 10.1093/biostatistics/kxj023. Epub 2006 Feb 14.
7
Multivariate survival analysis for case-control family data.
Biostatistics. 2006 Jul;7(3):387-98. doi: 10.1093/biostatistics/kxj014. Epub 2005 Dec 20.
8
Semiparametric estimation of marginal hazard function from case-control family studies.
Biometrics. 2004 Dec;60(4):936-44. doi: 10.1111/j.0006-341X.2004.00249.x.
9
Analysis of survival data from case-control family studies.
Biometrics. 2002 Sep;58(3):502-9. doi: 10.1111/j.0006-341x.2002.00502.x.
10
Fruit and vegetable intakes and prostate cancer risk.
J Natl Cancer Inst. 2000 Jan 5;92(1):61-8. doi: 10.1093/jnci/92.1.61.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验