Department of Statistics, University of Haifa, Haifa, Israel.
Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
Comput Methods Programs Biomed. 2023 Dec;242:107819. doi: 10.1016/j.cmpb.2023.107819. Epub 2023 Sep 21.
Competing risks data arise in both observational and experimental clinical studies with time-to-event outcomes, when each patient might follow one of the multiple mutually exclusive competing paths. Ignoring competing risks in the analysis can result in biased conclusions. In addition, possible confounding bias of the treatment-outcome relationship has to be addressed, when estimating treatment effects from observational data. In order to provide tools for estimation of average treatment effects on time-to-event outcomes in the presence of competing risks, we developed the R package causalCmprsk. We illustrate the package functionality in the estimation of effects of a right heart catheterization procedure on discharge and in-hospital death from observational data.
The causalCmprsk package implements an inverse probability weighting estimation approach, aiming to emulate baseline randomization and alleviate possible treatment selection bias. The package allows for different types of weights, representing different target populations. causalCmprsk builds on existing methods from survival analysis and adapts them to the causal analysis in non-parametric and semi-parametric frameworks.
The causalCmprsk package has two main functions: fit.cox assumes a semiparametric structural Cox proportional hazards model for the counterfactual cause-specific hazards, while fit.nonpar does not impose any structural assumptions. In both frameworks, causalCmprsk implements estimators of (i) absolute risks for each treatment arm, e.g., cumulative hazards or cumulative incidence functions, and (ii) relative treatment effects, e.g., hazard ratios, or restricted mean time differences. The latter treatment effect measure translates the treatment effect from probability into more intuitive time domain and allows the user to quantify, for example, by how many days or months the treatment accelerates the recovery or postpones illness or death.
The causalCmprsk package provides a convenient and useful tool for causal analysis of competing risks data. It allows the user to distinguish between different causes of the end of follow-up and provides several time-varying measures of treatment effects. The package is accompanied by a vignette that contains more details, examples and code, making the package accessible even for non-expert users.
在观察性和实验性临床研究中,当每个患者可能遵循多种相互排斥的竞争路径之一时,会出现竞争风险数据。在分析中忽略竞争风险可能会导致有偏差的结论。此外,当从观察性数据估计治疗效果时,必须解决治疗结果关系的可能混杂偏倚。为了提供在存在竞争风险的情况下估计时间事件结果的平均治疗效果的工具,我们开发了 R 包 causalCmprsk。我们从观察性数据中说明了该包在右心导管术对出院和住院内死亡的效果估计中的功能。
causalCmprsk 包实现了一种逆概率加权估计方法,旨在模拟基线随机化并减轻可能的治疗选择偏倚。该包允许使用不同类型的权重,代表不同的目标人群。causalCmprsk 建立在生存分析中的现有方法之上,并将其适应于非参数和半参数框架中的因果分析。
causalCmprsk 包有两个主要功能:fit.cox 为反事实原因特定风险假设半参数结构 Cox 比例风险模型,而 fit.nonpar 则不施加任何结构假设。在这两个框架中,causalCmprsk 实现了(i)每个治疗臂的绝对风险的估计器,例如累积风险或累积发生率函数,以及(ii)相对治疗效果的估计器,例如危险比或受限平均时间差异。后者的治疗效果衡量标准将治疗效果从概率转换为更直观的时间域,并允许用户例如通过多少天或几个月来量化治疗加速恢复或推迟疾病或死亡的速度。
causalCmprsk 包为竞争风险数据的因果分析提供了方便有用的工具。它允许用户区分随访结束的不同原因,并提供了几种随时间变化的治疗效果衡量标准。该包附有一个说明,其中包含更多详细信息、示例和代码,即使对于非专家用户也很容易使用。